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NATTONAT, ADVISORY COMMITTEE FOR AERONAUTICS

TECHNICAI. MEMORANDUM 1369

FLAT PLATE CASCADES AT SUPERSONIC SPEED¥

By Rashed M. El Badrawy
INTRODUCTION

The cascade problem in the subsonic range can be analyzed under
certaln assumptions either by mapping or suvbstitution of the blades by
singularities - sources, sinks and bound vortices - where the separation
of flow from the blades can cause various departures from the obtained
results.

Raising the flow velocity to a given value is accompanied by sonic
velocity within the cascade, which ususlly renders the solution of the
problem even more difficult. The same complication exists on the cascade
in flow at supersonic speed, 1n which the velocity is retarded to sub-
sonic by shocks.

But when the cascade operates entlrely in the supersonlc range, the
conditions become clearer. All disturbances act downstream only from the
sources of disturbance, so that the pressures and veloclties at the sur-
face of a sufficiently thin airfoll in the stream can be readily determined.

The present report deals exclusively with problems of cascade flow
in the supersonic range. As is known the f£lat infinitely thin plate is
the best airfoll with respect to wave resistance in supersonic flows;
hence it is logical to start with the cascade of flat plates. The last
chapter deals with the case of finite thickness.

Lift and wave resistance of an lsolated plate are computed first
gsince the cascade problem can often be reduced to this special case.
The well-known theories of two-dimensional supersonic flow are applied -
that is, the laws of oblique compression shocks and the expansion around
a corner.

The air forces are then calculated again and compared with the pre-
viously obtained exact values by means of Ackeret's formulas of linesrized
theory.

*'Ebene Plattengitter bei Uberschallgeschwindigkeit." Mitteilungen
aus dem Institut fur Aerodynemik an der E.T.H., no. 19, 1952.
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The cascade problem was to be solved in such & way as to be free
from the inevitable inaccuracles of the graphical method. TFor this reason
the caseg of overtaking, crossing and reflection of compression shocks and
expansion waves frequently occurring on supersonic cascade flows, whlch
usually are solved by graphical method, are analyzed in chapter II.

In chapter IIT the cascade problem is discussed and its solution
described in the light of the results obteined in chspter ITI. A numerical
example is also given. The same chapter gives further a definition of
the efficlency of the simple supersonic cascade and an evaluation for
several angles of stagger and attack.

The small angles of attack involved Justified the use of a linearized
cascade theory.l This is done in chapter IV. The numerical example of
chapter III is thus linearized and the results compared with those of the
exact solution. The supersonlc cascade flow at various angles of attack
was recorded by schlieren photogrephs of the flow between two parallel
plates, in the high-speed wind tunnel of the Institute (chapter V).

Chapter VI deals with the specific case of unsteady flow through
the cascade, caused by abrupt engle-of-attack changes.

lAccording to Ackert's linearized theory, the 1ift and drsg of a
double-wedge profile of thickness d and chord 1 &t angle V¥ in super-
gonic flow M is, in the presence of friction (Cf)

2 2
Cg, = M Oy = —————— (V" + <—> + 2cp NME - 1
V2 -2 Vg -1 v b
For the best drag-lift ratio e = %’-, put %% = 0. This meens that
=}

the wave resistance should be equal to the sum of friction drag and thick-
ness effect. In that event

2 2
a\ Me - 1

2
8¢opt

SWopt = M2 - 1 \/M2 -1

2 2
a M2 - 1
2W0pt = 2‘/(—77) + 2¢p n

Assuming possible values for d/Z and cp results in comparatlvely
small optimum angles Vopt-

Wopt

8 a\# M2 -1

€opt

(}l
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In chapter VII the effect of friction and thickness in a special
case on the cascade efficlency is analyzed. Since there might be &
possible application of the supersonic cascade to the supersonic pro-
peller, a simple evalustion of the efficiency of such a propeller i1s
made. A parallel steady two-dimensional flow is - with exception of
chapter VI - postulated.

The conventional notabtion is used unless specifically stated other
wise in the text.
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CHAPTER I. THE FLAT PIATE

1. General Considerations - Stipulations

The general equetion of continmuity of any compressible flow is

S , 9(pw) | 3(pv) , 3pw) _ 4 (1)
ot ox oy dz

The rate of propagation of a small disturbance, that is, the sonic
velocity, is, as is known

2_9%_ B
al S0 k= (2)

where k = =

In flows, in which a flow potentlal ¢ exists, the continuity equa-

tion can be written as

2 2 2
2,2k, ®x, Bl e, 30, 3
pag at * ax a.'X'.+ ay ay+ aZ aZ) * ax2+ ay2+ azz ° (3)

The momentum theorem glves the following relations

N
2 2
- l §2.= _QEQ_ + éﬂ éJE + §2 _QJR_.+ §2..§§2_*
P33 X3t X x> dy dx dy Oz Ox Oz
-1 §2.= a%p + ég a%$ + éﬁi + éﬂ _éﬁg_ ; (k)
Py Oy ot Ox

X
oy ax dy aye dz dy dz
X

3%, ¥ d%

xJ
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In two-dimensional flow the potential must therefore satisfy the
equation

i 2 2 2
_2[___ acp L(_a_a) 2 XX 39 2 X d9
Bx

ay2 a2\0y g2 Ox Jy dx dy g2 Ox Ox ot
2 2
29 39 _1239_, (5)

The velocity of sound is then

2 2
= 1
eg? - (k - 1) E@E) +<§’;> +§% (6)

where ag = velocity of sound in state of rest.

b For the steady case, the equation is reduced to

ol rfa\|, B, 1@\ 2wn
32 a2\0x 3y2 a2\0y g2 Ox Oy ox Oy

and the flow is completely identified, 1f the function o(x,y), which
is to satisfy the boundary conditions, is determined.

This equation is either elliptic, parebolic, or hyperbolic, depending
upon

(L-M2) S0
where
1
M= Elgrad-lCP (8)

is the local Mach number.
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The use of this equation is difficult if its type in the particular
range, as In the transonic range, is changed. However, the flows analyzed
here, are of identical character everywhere, that is, the flow is of the
hyperbolic type.

One of the known solutions is the expanslon around a corner, developed
by Prandtl and Meyer (ref. 1).
2. Conditions at Expansion Around e Corner

The two-dimensional flow past the wall AE at a Mach number Mp

(fig. 1) is deflected by a convex bend at E through an angle @, through
which an expansion is initiated. The disturbance proceeding from E
spreads out solely 1n the range lying downstream of the Mach line EB,,

where

X B1EA' = Mach angle My = sin-1 ﬁ; (9)

and stops at the Mach line EBp, where

¥ BoED = pp = sin-l 2
Mo

In it Mz 1s the Mach number of the flow after the expansion.

The streamlines in range B1EBo are curved similarly and run
parallel to the wall ED downstream of this range.

It can be proved that the Mach lines in this flow are the character-
istice of the differential equation which define the potential.

When the expansion proceeds from a Mach number M; = 1, (“1 = g),

the following relations can be proved (ref. 2):

tan po = A cot Mn (10)
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[

P £+ 1 k-1 (11)
Po 2 cosh\w

(po = stegnation pressure)

Mo ___\FK +1) -2 20527\0) (12)
(k - 1)cos“\w

(13)

Obviously

A

@=w+ U -

As function of Mp (ref. 3)

8= |cos~l L & -;-'-7\ cos~1f1 £+ 1 (1k)
2 1+ 22
2

This equation gives & maximum angle of expansion @&ygy, which cor-
responds to & Mach number Mp = » after expansion (k = 1.400)

Omex = 130.45°

If the Mach nunber before the expansion M; i1s assumed other than 1,
the meximum angle of expansion becomes obviously
Omax My = Omax - V

where v 1is the angle of expansion from M= 1 to M;. The values for
various Mach numbers of the inflow (M1) are

M1 1.00 | L.50 | 2.00 | 2.50] 5 8 10 |e

Omax M;° 130.45(118.55|104.07191.32}53.55|34.53 |28. 1|0
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3. Conditions of Oblique Compression Shock

The discontinuities that may appear in supersonic flows and across
which veloclty, pressure, density, temperature, and entropy undergo a
discontinuity, while the total energy, thermic and mechanicael, remains
constant, were predicted by Riemann (1860) end Rankine and Hugonilot (1887)
as normal compresslion shocks.

In oblique shocks (Prandtl-Meyer) only the velocilty component normel
to the shock front is modified.

In figure 2 the supersonlc flow past the wall AE 1s deflected at E
by an angle 5. A compression shock 1s produced and the shock front ES
is inclined at an angle ¢ - the shock angle - toward the air flow
direction. -

With subseript 1 denoting the state before the shock and subscript 2
that after the shock 1t can be proved that (refs. 3 and k)

po' 2x 24,2 kK - 1
= = =& __(M,%1in2y - E =L 1
Py K + l(l 8 7 2r ( 5)
1l 5 k-1
Py K P 3
_g_ = u(ﬂ) .__)'H{_E. Sin27 - [E = 1 1+ ._l.l;L_ Sin27 (i.)
o k + 1\pg (k + 1) K4+ 1 (k - 1)2 POy
(16)
P 5 -
J"=rc+3. 21:2+K - ()
P2 M;“sin“y 2
2
M
cot &= FF2 = - 1lltan 7y (18)
2 M;Zeiny - 1
u t
' _cosy (19)

4y cos(y - 8)
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tan(y - 8) _P1 _ _ 1
tan & 92' B+ 1 1 B 1
2 |Mo2sin®(y - 8) 2

(20,21)

A direct relation between the Mach numbers before and after the
shock can be esteblished

(22)

The relation for the change of the static pressure by the shock is
the same as for the normal shock when it is applied to the velocity com-
ponent perpendicular to the shock front. Consequently

K

. —_ 1
-1 ——
o R+ 1 M-2g1in2 K 1-x
02 2 1 80Ty 2k 2 ., 0 k-1
Poy k- 1 e B (22)
1 1+ My2sin2y

From these equatlons it follows that the shock angle ¥ is greater
than the Mach angle, that 1s, the speed of propagation of a finite dis-
turbance is greater than the sonic velocity. When the angle of deflec-
tion B approaches zero, 7y = p and the shock changes to a Mach wave.

Also of interest is the shock angle at which the Mach number after
the minimum shock becomes equal to unity. Denoting this angle by g

it can be proved (the week stable compression shock is always allowed
for) (ref. 3, p. 47) that

(l - Sin275> 2 Sina')’s - —l— = sin27s - _l__ - 2 Binays - ._l_
2 ' 2 E+ 1 2
My My My

(24)
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This equation is used to determine the meximum shock angle which
corresponds to a Mach numbexr before the shock M; = « and a Mach num-

ber Mp' = 1 after the shock. The result is .
sin27s = f+ 1 (25)
2k
hence
75 = 67.80

at &k = 1.%00 (air).

By*equation (18) the corresponding deflection angle 8y 1is

Bg = 45.58°

Table 1 and figure 3 represent the values of 95 and Bg 2 at
various Mach numbers Mj. :

4. 1ift and Drag of an Infinitely Thin Plate (Exact Solution)

An infinitely thin plate ab in parallel flow at supersonic veloc-
ity Uy 4is placed at the angle V. It is assumed that the width of the

plate transverse to the flow direction is =, so that the problem is two
dimensional.

The streamlines above oa (fig. 4) experience a deflection which
is associgted with an expansion. So the state at the upper side of the
plate can be defined by equations (10) to (14). But below the plate a
compression shock &ad occurs. The state of the flow on the lower side
of the plate is accordingly determined from the formulas (16) to (21).

The force on the plate per unit area 1s

K = (pg' - Pg) (26)

2
The weak stable shock is always taken into account. See Rilchter,
ZAMM, 1948 and Thomas, Proc. N.A. Sc., Nov. 1948.
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where p2' and pp represent the pressure on the lower and upper side
of the plate.

Obviously, the 1ift A and the drag W per unit width are
A =X cos YL (27)
W= K sin yL - (28)

To compute & 1ift coefficient, a reference dynemic pressure of the
inflow

2
Q.l - = plul
or
q = 5 pMy? (29)

2

1s utilized.

As function of the Mach number M;, the ratio of dynamic to airstream
pressure is

iy
M, 2 (%i M2 + 1> (30)

The results are represented in table 1 and figure 5.
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Lift and dreg coefficients are herewith

Cg = = cos ¥
a 4

> (31)
J

or, if all pressures are referred to stagnation pressure DPgs

sin ¥

Po D o Py
cg = 0 0 /lcos ¥ Cy = 0 o sin ¥ (32)
a5 a7

%o Po

- T =
P2’ Pp (Pa‘ Pp

The drag/lift ratio is

e=ﬁ=ta.n\;r (33)

Ca

Teble 2 gives the values of cg, Cy, &nd € up to M; = 10 a8
computed by the formulas (32) and (33).

In the calculation of the Mach numbers up to Mj; = 4, the tables

by Keenan and Kaye (ref. 6) as well as those by Ferri (ref. 3) were used
to define pp/p, and pz'/pl (k = 1.400).

For higher Mach numbers, the formulas of sections 2 and 3 were
employed. At each Mach number, the angle of attack was varled up to

ws(ME' = l)' .

Figures 6 and 7 show the veriastion of Cr and cg over the angle

of attack V; figure 8 shows the polars cg plotted sgainst Cyr-

The boundary curves show the meximum 1lift and drag coefficients that
can be expected without getting in the transonic range.
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Other values for the boundary curve are given in table 3. Since the
pressure distribution on the upper and lower side is constant, the result-
ant force is applied at plate center and is normal to the plate. There is
no suction force as in subsonic flow.

5. Lift and Drag at High Mach Numbers

At high Mach numbers the angle of attack of the plate can exceed
the maximum expansion angle ©pgy (section 2) corresponding to the Mach

number of the airstream ©Epgx = ¥g &t My = 6.4). Hence, when assuming

continuous flow, an empty wedge-shaped zone between plate and flow appears.
This zone is largest at constant angle of attack when. M = ». In that

event, no deflection of flow is possible.

- Owing to this vacuum space, the pressure at the upper side is zero.
The resultant force K is obtained then from the pressure on the lower
side, behind the compression shock. Hence, per unit area

K= p2' (3)4')

or, when referred to the dynamic pressure of the airstream,

X % _ 2 B (35)
99 U PP

Introducing p2'/pl from equation (15) gives

X __*4 < siny - ﬁ;:%% 22
K + K <+
q'l K.Ml

where the term containing l/Ml2 can be disregarded without great error.

siny (36)



1 NACA TM 1369

So the 1lift and drag coefficient are

-

Cg = " i T sin27 cos v
s (37)
Cy = 4 sin27 sin ¢
K+ 1

-

Both formulaes are dependent on y and V¥ only. Between these there
exist the relation given in equation (18), which can be written as
follows (& = Vy):

cot ¥ = - litan y

where the term —EE can be dilsregarded again. Then
cot ¥ = (i.i - ])ta_n v (38)

The values and curves designated with M = «» in table 2 and figures 6,
7 and 8 were defined by equations (37) and (38). For comparison the 1ift
and dreg wes also computed by Newton's formula (the normal component)

2 sin2y cos ¥

Cg,

(39)
2 sindy

Cy

The corresponding values and curves carry the subscript N.
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6. Calculation of Lift and Drag by Linearized Theory
According to Ackert's linearized theory, the members of higher order

in gﬂ can be disregarded without great error in the potential equation
Y

g"‘il_lg?)z a%pl_lgf 2 md % _,

+.__. - m—— — —— S——— T
32 a2 \ox aye a2\dy a2 Ox Oy Ox Oy

for slender bedies at small angles of attack, because the interference
flows are small compared to that of the airstream.

The equation reads accordingly

2 2 2
sz a2 \ox

Inserting

.E.Gég)g = M2
a2 \ox

and observing that M i1s greater than unity, the equation reads

3% 3%

——E{ME - 1) - °9% _ 0 (40)
2

dx oy

The general solution of this equation is

Q= f(x - y'VM? - l) (41)

It indicates, as stated in section 2, that the lines of constent
potential are the Mach lines of flow, and their slope has the Mach angle

He
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This solution shows further that the flow velocitles

u = §£ and v = éﬁ

X dy

satisfy the condition

U= - (k2)

is appliceble.

The pressure varistlon by the momentum equation reads

%:-UAU=-Uu (43)

where U 1s flow velocity and u is interference flow in stream direc-
tion.

Accordingly

o _ _* ¥ (4h)
dx
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The pressure difference between both sides of a £lat plate is

2. % (45)
Y AN I

The 1ift and drag coefficients at the angles in question are

ca=__.)+l__
M2 -1
> (46)
2
Cy = iy
Me - 1

The drag/lift ratio according to this theory is
= (%7)

Instead of the expansion wave and the compression shock at the
leading edge, it has simple Mach lines as interference lines (fig. 9),
in contrast to the exact theory.

The values given in table 4 and plotted in figures 10 and 11 were
computed by these formulas. The calculations were carried out at each
Mach number up to angle of attack Vg - from the exact theory. The cor-

responding cg and ¢y values lie on the curve G'.

At sonic velocity on the lower side of the plate p2’/p0 = 0.5283.
This value, introduced in the following directly obtainable relation

2
P2'-Pl=;l_-@=__ﬁ_- ().|.8)
2 .
M2 -1
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and

o' foo - Pafeo _ oy
q]_/Po M12 -1

gives the angle of attack (Wsz) corresponding to Me' = 1, which in gen-
eral is greater than 1g. -

7. Comparison of the Results of the Linearized Theory With
Those of the Exact Method

In table 5, the difference is (cG - qL), where cg 1s the coef-
ficient of the exact method and c¢j, 1is that of the linearized theory
at Mach numbers M; = 1.40 and M; = 5.00.

It follows that the lineasrized theory is a very good approximation
for small angles (up to about 10°). For greater angles the values of Cg

and ¢y &are too small.

In figures 6 and 7, the cg and cy curves by linearized theory
merked A' and A are included for comparison.
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CHAPTER II. INTERSECTION, OVERTAKING AND REFLECTION
OF COMPRESSION SHOCKS AND EXPANSION WAVES

1. Introduction

Overteking of expansion waves and compression shocks in supersonic
flows occurs when the marginal streamlines - or boundary walls - change
their direction twice in the opposite sense (fig. 12(a)).

If expansion waves or compression shocks strike a fixed wall and
their slope towerd the wall does not exceed a given angle, they are
reflected as expansion waves or compression shocks (fig. 12(e)). Crossings
occur in flows through channels and free Jets (fig. 12(b)). All these
events can occur in cascade flows (fig. 12(d)).

2. Small Variations

(a) Suppose that a small expansion occurs. at B in the supersonic
flow M1, p1, 21, e Ppest the wall AB (fig. 13). The angle of

expansion is 8. If M 1is sufficiently small, differential considera-
tions are permissible.

Bernoulli's equation gives

bpy = - pyUy AU (49)

where U is the megnitude of the velocity and AU its variation; Ap is
the pressure variastion.

Since the vectorlal wvelocity veriation is normasl to the interference
line, the variation of U is

Uy A8

\/Ml2 -1

AUl = Uy ten py 40 = (50)
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hence

2
&p = - —— (51)
Mi2 - 1

But, as the dynamic pressure q 1s given by

1 1
a=ze 01" =3 Kp1M; 2

the pressure variation can be written as

2
£p M. “AB
Mp = - =1 (52)
Mp2 - 1

The variation of the Mach number M follows at (ref. 3, p. 26)

M -
Y p—— <1 P2 M12> 20 (53)
\/Mlz -1 2 .

The Mach line BE; forms with flow direction AB +the Mach angle H1s

the Mach line BEo at the end of the expansion the Mach line up. Now

i1t may be assumed that this small expansion takes place on the Iinter-
ference line BE', whereby

Ly + Ho - A8
X A'BE' = = 22 (5k)

(b) A simple differentistion gives the change of the shock angle ¥
as well as the pressure change .p2' after the shock, due to a small vari-~

ation of the angle of deflection &, for the compression shock
(fig. 14). _
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Between y and & the relation (eq. 18)

K -; 1l M12
cot & = tan 7 -1
Mlzsinz'y -1

exists, and therefore

N = - 5in28|sec 7<‘% - l) - M1251n27 2—2 Ay = C Ay (55)
B
where
k+1, 2
. A= M
> 1
B = (Mlesinzy - l)
and

Q
|

- - 5in2s seca'y A - Mlzsinz'y 24
B B2

The pressure p2‘ after the shock is (eq. 15)

1 2K 2 2 kK + 1 ’
= M- <sin - 6
Ps Pl<u+1 1 7-—1 (56)

and the result for a small variation of the shock intensity is

. 5 _
Mpst = pM sin 2y Ay (57)
2 llK.+ZL
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3. QOvertaking of Compression Shock and Expansion Wave

(2) The supersonic flow My, Dq, p; DPast the wall AE (fig. 15(a))

undergoes a directionel chenge 8 at E. The compression shock EF and
the flow direction form the shock angle 7y, in zone (1). At C &an expan-

sion takes place about an angle @, and the expansion wave FCG overtakes
the compression shock at F. To simplify the calculation, the continuous
expression is replaced by a glven number of expansion waves of finite
intensity, whereby a successive expansion through these waves 1s assured.
If n is the number of waves, the expansion due to a wave is 8/n = AS.
The number n must be so chosen that A9 1is sufficlently small.

Now consider the intersecting of wave CFl(Aﬁb and compression
shock EFq(8), figure 15(b).

From Fy; the compression shock advances with weaker intensity in
direction Gj, that is, it deflects the flow less - say by B&'. F1G7 forms

with the flow direction the angle ' at (1). Indiceting the various zones
by (1), (2), (3), and (&), the streamline through F; splits the zone (4)

into the portions (4g) and (4;). The flow in (2) and (3) is fully known,
because the angles & and A® are known.

To define the conditions in (4), the streamlines S1, So, and S3
are examined. The directional change of So amounts to (5 - A6). But
along 83 the flow experiences the directional change &'. To maintain

equilibrium in (4), the pressure as well as the velocity direction above
and below the streamline 83 must be equal.

In general, the pressure change from (1) toward (3) is not the same
as from (1) to (%), so that a reflected expansion wave - possibly a small
compression too - must appear between (3) and (L), say along a line FqHj.

Supposing that this reflected wave is an expansion wave of inten-
sity A9'. By "intensity" of an expansion wave or a compression shock is
meant the deflection, which the flow experiences in the process.

The pressure in (U,) is, (according to section 2)

M2
"3 A8 (58)

By, = P3[L - 2
Ve -1
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The difference of the deflection angles amounts to (8' - 8) = A5. In
general, this intensity decrease is small, because the compression shock
is much stronger then the expansion wave. The corresponding change in
shock angle o 1is Ay.

The pressure in (L4g) follows from the change in shock intensity.
Hence we can say that

Py, = P’ - App' (59)

This is again the equatlon for small variations derived for shocks from
equation (57). Accordingly

_ ' 2 2K
Py, = Pp' - PpMyT —— sin 27 &y (60)

Posting Puo = phu’ gives

2
oxl1 - K.M5 29" =PI_PM2
3 > 2 M1
M3 -1

sin 2y Ay (61)
£ 4+ 1

For the velocity direction in zone (4) to be unequivocal, it must
0 =B + O (62)

The relation between shock intensity variation and engle of shock
(eq. (55)) together with the two previous equations gives

)
o' = c (63)
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L0 - /B (64)

with the constants

Mlasin 2y

<¥125in27 - Eéi—i)

Q =

2 2
M

e R R

‘/M32 -1 ‘/M‘22 -1

The condition for equality of static pressures is not identical with
that for equality of velocity magnitude above and below the streamline S;.

As the shock losses on either side of the intersection point F are
unlike, the stagnation pressures in the wake above and below streamline 81

are different, hence there is & small vortex layer along thils streamline.

Figure 16 represents the graphical solution of the problem by means
of the characteristics and the shock polars. The condition for equality
through equality of velocity magnitude in the entire zone (L4) is
approxlimated.

(b) The reflected wave is disregarded:

In general, the angle of deflection AB' - intensity of the reflected
wave -~ is very small (compare numerical example). Thus the pressure in
(3) is not much unlike that in (4), so that this reflected wave FqH; can

be discounted.

In this event the flow directions in zones (3) and (4) are identical,
or in other words

AO = LD (65)

With equation (55) AS can be defined and from it the new direction o'
of the compression shock. The velocities in (3) and (4) have then obvi-
ously the same direction but not the same magnitude by reason of the small
vortex layer developing between (3) and (4).
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Numerical Example

Free stream:
pl/po = 0.12780

Before overtaking:
shock intensity

shock angle
hence the state in zone (2)

Pp /Py = 0.1773
intensity of the expansion wave
state in zone (3):

p3/po = 0.1693

Determination of constants:

Inserted in equation (63) and (64) gives:

By equation (62)

&y

A8

fate)

1

2.000

60
35.24°

1.78
lO

1.818

1.078

3.04

3.015

3.175

intensity of the reflected wave
0.89°

0.06°

28 - A®' = 0.94°

Therefore the shock intensity after overtaking is

The new shock angle 1s

o

1

7

The reflected wave disregarded, leaves

shock intensity
angle of shock

oy
8!

1

4

]

I

5.04°
y - &y = 34.35°
C A =CAB= 1.078°

50
34,160

It is readily apperent that the reflected wave is very smaell, hence
scarcely affects the pressure in zone (3).
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Y. Intersection of Compression Shock and Expansion Wave
Figure 18(a) represents an expansion wave AG of intensity o
proceeding from the corner A. At F thls wave crosses a compression
shock of intensity & emansting from the corner B.

As before, the continued expansion is replaced again by n expansion
waves between which the flow 1s stralght. The deflection by each wave is

29 =

BIl®

After crossing (fig. 18(b)) the compression shock has an intensity &'
and a shock angle 9'. Now the expansion wave has the intensity £8'.

The zones produced this way are numbered (1), (2), (3), and- (4).
The streamline F1S splits the zone (4) into (Ug) and (4y).

Looked for now is the shock intensity &', shock angle 7', and
expansion angle 28' after crossing, and the state of flow in (4), when
the state of flow in (1) 8, 9 and /A9 are known.

According to chapter I the state of flow in (2) and (3) can be
determined directly.

The pressure in (4;) follows through a small expansion 2M®' according
to the laws 1in chapter II at }

2
kM
Py, = p2|l - — e (66)
M12 - 1

where A9 i1s still unknown.
The method of solution consists in filrst meking en assumptlion for
the shock intensity after intersecting, which is

8y = (5 - AB) (67)

The corresponding angle of shock would be 7y~
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The state after this shock, indicated by 40', can sgein be defined
according to chapter II. The pressure in (bo') 1is

T 2k
Pl —P3n+

2 2 K - 1
1M3 si 7i-n+l (68)

Now the flows in (ko) and (2) have identical directions, but the
pressures and the magnitudes of the velocity are different.

To assure equilibrium within (4), the pressures and velocity direc-
tions in (L4g) and (ly;) must be equal. And to satisfy this condition the
assumed shock must be intensified by AB3.

Obviously it shall
154 = 18 (69)
The new pressure in (4g) is (according to section 2b)

2K
k+ 1

1

= 2
ph_o = p)'I'O + p5M5

sin 27; Ayy (70)

where Ay; is the change in shock angle 7j and is computed by
equation (55) '

A')'i = - ( 1)

(For the calculation of C see section 2b)

Posting Py = Py equations (66), (68), (70), and (T71) give

2
KMp ' 28 .2 ., 2 £ -1
Poll ~ ———= 128 =p3 +1M331n71- +l+
N K K
Mpo= - 1
o 2 . 29!
paM3~ —— sin 27 =5 (72)

This equation is linear in A8'.
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Now the quantities &' and ' can be defined

8' = 84 + LBy = 81 + L8' (73)
1 .
Y=y v Ly = oyp + 9%— (T4)

The pressure in (Uy) can be obtained directly from equation (70).
The Mach number Mho itself can be determined according to chapter I,

if &' end ' are known. Thet in (4,) is likewise directly obtainable
from My by the isentropic expansion A®'.

The slight discrepancy between the values Muo and Mhu is due,

as stated in section 3, to the fact that the condition for pressure
equality, owing to the change in static pressure after both shocks, does
not require equal magnitude of velocity. So a small vortex layer along
streamline F9S 1s to be expected.

Before intersecting the expansion wave forms with the flow &irection
in zone (1) the angle (section 2)

l~'-l+!~1-3‘A@
2

After intersecting the angle with the stream direction in zone (2)
is

Ho + [y - A@'

Y
2

But there is a difference & between the flow directions in (1)
and (2), so that the looked-for directionsl change is

by + Hz - A8 Ho + py - A8
+5 -
2 2

(75) |

Xb=X+8-Y=
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The directlonal change of the shock front is

Xe=17- (7" +29) (76)

A negative angle b and a positive angle c¢ indicates that the
expansion wave or shock front after crosging is in more downstream
direction.

For illustrative and comparative purposes, the graphical solution
in figure 19 was made with the aid of the charscteristics and shock polar.
Here also the condition for pressure equality was replaced by velocity
equality.

The described mode of calculation is used in the followling numerical
example for illustration.
Numerical Example
The flow in zone (1) is:

P1/Po = 0.22905 My = 1.435 g = bb.18° (See cascade
example of the following chapter III, zone (3)). '

Deta before crossing:

intensity of expansion wave 20 = 10
intensity of compression shock 5 = 3.03°
shock angle of compression shock 7 = 47.91°
With it the states in zone (3) become:
p3/Po, = 0.28478 Mz = 1.469 by = 42.89°
Therefore
Ppo/Py1 = 1.157
pa/pol = 0.34560 My = 1.332 no = 47.75°

Assumed shock intensity

8y = 5 - A8= 3.03 - 1 = 2.03°
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corresponding angle of shock 74 45.290

I

pressure after shock puo)/pol = 0.3153

Determination of the constants

A=5%2L 2 5500
2
B = (M3®sin2y; - 1) = 0.092
A 2A
C= - sinaai sec271<g - %) - sinzyiMl2 55- = 0.750k

Equality of pressure in (ko) and (&) gives

kM
Py, = Dol - —E— ne'
Mp2 - 1

= _ 1 2 2k 20"
= Pl T Py *PIM3T e sin 2y =

which inserted gives

A8 = MBy = 0.89°

Ayy = i 1.19°
c
After the crossing:
shock intensity 8' = 84 + MBy = 2.03 + 0.89 = 2.92°
shock angle Y=y b Ay = 45.29 + 1.19 = L6.L4EP
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Hence

pu/po = 0.3303 1y = 47.08°
Mll-u = 1.3643
My, = 1.3640

The comparison of the two Mach numbers indicates that the difference is
qulte small and lies within the calculation accuracy.

Directional changes:

Expansion Wave 4 b= 43.036 + 3.034 - 47.b7 = - 1L.4°

Shock front d ec=U47.91 - 4648 + 1 =+ 0.43°

5. Crossing of Expansion Waves

Each expansion wave is again replaced by n small waves. In fig-
ure 20(a), two waves of intensity 7 and A92 cross each other in F.

After crossing, the intensitles are &31' and A@z'. In this case, only
one stream direction is obtained in zone (4), when

087 + L8p = 191" + Los' (17)

Application of the relations of section 2 results in

that is
2 2
KM KMo
p5l-—-—3—-—-A®2' = Dol - ——— 18" (78)
Mz - 1 Mp2 - 1
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Since all other quantities are known, A8y' and 28,' can be com-
puted from these two equations. ;

The directional change of the Mach lines 1s like that in the pre-
ceding section

By + Pz - Bn + Ky, - !
o= —22 - 12* ! (79)
B + B - 28 Bz + Wy, - OB
#C:l 2 2+K~32- 2 4 2 (80)
2

Since all changes follow the same adisbatic curve, the condition for
pressure equality ylelds equal velocity values at both sides of the
streamline FS. Hence, no vortex layer will appear. Figure 20(b)
represents the graphical solution.

Numerlcal Example
Alrstream: |

y7.050

Al

pyfpo = 0-3295 My = 1.366 by

0.99%. Therefore

The intensity of the first expansion wave is: A8

Po/pp = 0.313k Mp = 1.402 1y = 45.50°
The second expansion wave intensity is: 0B, = 1.06°

The conditions in zone (3) are then
Pq/Po = 0.31245 My = 1.hokl ug = 45.433°

The two equations defining A8' and AB' are:

28] + MBp = 0.03579 = 28, + 48]

2 2
Kp kP
P4=P3——ﬁl—@l'-=P2-——2M2—-—A82'

\/M32 -
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hence

287" = 0.018% = 1.054°

0.0174 = 0.997°

A%!

after which the conditions in zone (4) become:

ph/po = 0.29722 My = 1.hh W, = 4%.01°

By equation (79) and (80) the directional changes of the waves are

X b=+ 0.5° end X c= - 0.020

6. Reflection of Compression Shocks and Expansion Waves

No difficulties occur in the determination-of the conditlons exlisting
behind the reflected compression shock FB (fig. 21). Those in zone (2)
can be defined according to chapter I, if the state of the airstreeam and
the Intensity & of shock AF are known. Obviously the reflected shock
is of the same intensity as the impinging shock, so that the shock angle ¥
of the reflected shock and the conditions in zone (3) can be defined.

The same holds true for the reflectlon of expansion waves, when the
intensity of the expansion waves and their slope with respect to the wall
are known. :
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CHAPTER ITI. THE CASCADE PROBLEM

1. Problem

Visualize a cascade of infinitely many and infinitely thin flat
plates, of which two adjacent plates AB and A'B' are represented in
figure 22. The angle of stagger is 90.- B, the spacing t and the
blade chord L. This cascade is exposed at angle of attack V¥ +to a
supersonic flow M, pj, P1:

It is assumed that the flow is the same in a1l planes perpendicular
to the plates and determines the force, that is, 1ift and drag as well
as the pressure varistion along the plate (blade).

2. Method of Calculstion

To each plate there correspond interference lines (chapter I), that
is, the expansion wave issuing from the leading edge and compression
shock (fig. 22).

At wide spacing, the separate blades of the cascade will not effect
each other and the problem reduces to the single plate.

Now if the spacing decreases for constant chord, the interference
lines of one plate intersect those of the other, without, however, any
force being exerted on the plates themselves for the time being, In
this event, the force on each plate is the same as on the single plate,
‘except that the wake flow is slightly disturbed.

The values of t/L below which the interference line of a plate
begins to exert an effect on the adjacent one, are called (t/L)crit

"eritical chord-spacing ratio."

At t/L < (t/Lcrit) the interference lines are reflected on the

plates. After the crossings and reflections, new zones sppear on both
sides of the plate where the pressure as well as the velocities are
unlike the uniform pressures and velocities to be found at either side
of the plate. As a result, there is a change in the total force as well
ag the 1lift and drag on each plate.

The mode of calculation consists in defining each intersection and
reflection with the laws of chapter II and from it determining the con-
ditions in the several zones. Integration of the various pressures on
both sides of the plate gives then the total force, that is, the 1ift
and dreg.
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The resultant force still is perpendicular to the plate, but no
longer through the plate center, hence produces a moment with respect
to the center. The position of the force is defined by statistical
methods.

This method is illustrated in the following example.

5. Example

The cascade ABA'B' (fig. 23) with 30° angle of stagger, that is,
B = 60°, and at angle of attack of ¥ = 3° is placed in a stream with
M; = 1.4004k (corresponding to v = 99).

The  blade spacing was assumed at the beginning, while the plate
chord was so chosen after completion of the calculation that the expansion
wave was reflected exactly once on the bottom side of the upper plate.
It was found that +t/L = 0.547.

The flow experiences a compression shock starting at the leading
edge A'. The shock angle ¥ = 49.570 1s reaed from the shock tables
and the shock front A'as can be plotted.

Proceeding from the leading edge A, an expansion wave spreads out
‘between the Mach lines Ax and Ay. The first forms with the airstream
direction the angle 4 = 45.56°. The characteristics tables give

MT = 1.503, that 1s, the Mach number which is obteained at an expansion

by 3° from the Mach number 1.4004. The corresponding Mach angle, that
is, the angle which direction Ay forms with the pleate, would be
Wy = k1.70%. Instead of the continuous expansion, assume an expansion

in three stages, each corresponding to a 1° deflection. The conditions
in zones 1, 2, 3, and 4 are obtained from the characteristics tables,
after which the directions As, Ab, and Ac can be defined.

By epplying the methods of chapter II to the calculation of the
crossings &, b, ¢, e, f, g %, m n, P, q, 8 and the reflec-
tions 4, h, i, k, o, r, u, the static pressures, the Mach numbers
(table 6), and the intensities of the expansion waves and compression
shocks, as well as thelr directional changes (see table T and fig. 2k)
in the several zones, can be determined.

The static pressures were referred to the standard stagnetion pres-

sure pg. -

The stegnation pressure changes were disregarded in the determine-
tion of the Mach number. This change is rather small according %to table 6,
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so that no appreciable advantage was to be gained by including it. (For
calculation of pq/pol, compare eq. (23).)

The pressure distribution past the plate is obtained immediately and
represented in flgure 25. There the passage of compression shocks and
expansgion waves is accompanied by a sudden pressure variation. Since the
actual expansion ls contintious, the serrated line is replaced by a smooth
curve, such that the areas declsive for the force calculation are identical.

Note that the pressures on both sides of the plate cancel out over a
large portion of the chord. The resultant force can be determined by
integration of the various pressures; the various spacings 1 are read
directly from figure 23.

The plate width was assumed at b 1. The result is

) i)

Downward resultant force

.2963 upper side

I
(@]

= 0.2896 lower side

———£-= 0.0067
Pol
1ift coefficient
b
X 0
Cq = ——— — co8 ¥ = 0.01532
PolL q
drag coefficient
P
K (0]
Cy = —— —EE sin ¥ = 0.00082

PolL
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4. Calculation of Thrust, Tangential Force and Efficiency

(a) The resultant force on the blade is resolved into two components.
One - the thrust S - is normal to the plane of the cascade, the other -
the tangential force T - parallel to it (fig. 26).

If
K = resultant force per unlt of area
(90° - B) = cascade stagger angle
then
S=Kcos B
(81)
T =K sin B

As functions of 1lift and drag

A cos(B - ¥) - Wsin(B - V)

[¢]
]

H
]

A sin(B - ¥) + W cos(B - ¥)

Referring the force to the dynamic pressﬁre qy of the alrstream,
gives the coefficients

)
cs=q§£cosﬁ
r (82)
= X
CT—EISinB J

similar to the 1ift and drag coefficients, which can be obtalined directly
from cg and cy.
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At fixed blade chord and fixed angle of attack the resultant force
reaches its meximum value when adjacent blades do not affect each other,
that is; when +t/L > (t/L),pi¢- In this event

K=pp' - Pp

where p2' is pressure at lower side (behind compression shock) and
Pp 1s pressure at upper side (behind expansion wave).

For a given Mach number of flow and angle of attack the thrust and
tangentlal force is meximum at p = 0° and B = 90°, respectively.

At a given angle B and a given Mach number, T and S increase
with increasing ¥. Owing to our assumptions V¥ may not exceed Vg, 1in

order to prevent subsonic flows on the bottom side of the plate.
(b) Definition of efficiency (no friction):

It is supposed that the air enters normal to the plane of the cascade
at a speed v (fig. 26). The cascade moves with the tangential velocity 1
end finds itself accordingly in a relative flow with an angle of attack v,
whereby tan(p - ¥) = v/u. As a result of this flow, the two forces S
and T normal and parallel to the plane of the cascade act on the plate;
S and T are defined according to previous consideratlions. An efficlency
is defined as on a propeller, by visualizing the blade being driven at
ppeed u with respect to force T and so producing a force S in exial
direction on the flowing air. Then the power input is T X u, the power
output S X v and the efficiency is

- Sv
n= (83)
or
==
n = fon(B - W) _ ten B
tan B 1+ tan ¥ ten B

The efficlency is seen to be dependent on ¥ and B only. At
constant PR it decreases with increasing V. At ¥ = constant, 1n has
& maximum, if ' )

81 _ ¢ (84)
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that is, when

tan B = tan ¥ + \/(tan\]r)2+l

which approximately gives

B =i+ 2y (85)

The maximum efficiency is then

1l - tan
(86)

mex
¥ = Constant 1+ tan

o | |o)e

At small values of V¥, tan ¥ = ¥ and \|;2 is negligibly small, hence

at 5=1+5°+%‘u;

Nppy = —— (87)

The efficiency for various B and ¢ 1is represented in table 8 and
figure 27.
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CHAPTER IV. LINEARIZED CASCADE THEORY

1. Assumptions

The theory is based upon the following:

(2) All disturbances are small in the sense that all interference
lines mey be regarded as Mach lines. The expansions are simply concen-
trated in a Mach line and the compression shocks replaced by Mach com-
pression waves.

(b) Intensity and direction of waves are not changed by intersection
of expansion and compression waves. The Justification of this assumption
is indicated in the preceding numericsel exemple, where it was shown that
the directional chenges of the wave fronts are small, &8 a rule.

On these premises, the interference lines AA' and AA" parsllel
to BB' and BRB" start from the small disturbances A and B
(fig. 28(a)). At the intersection in a +the directions of the waves AA'
and BB' as well as their intensities remsin unchanged. The pressure
and the velocities in the zones (2), (3), and (%) are defined by the laws
of chepter II. In the hodograph these assumptions imply that the char-
acteristics network in the applied zone is replaced by a parallelogram

(fig. 28(b)).

2. Linearization of Cascade Problem

The application of these simplifications to the solution of the
cagcade problem produces parallel Mech lines within the cascade, which
remain parallel after crossings or reflections (fig. 29(a)). (L = plate
chord, t = spacing and = angle of attack.) The Mach lines Aa
and A'a emanate from the leading edges A and A'; the angles aA'X'
and aAX are Mech angles and both equal to Mq+ On pessing through A'as,

the flow experiences a compression and a directional change V¥, along Aa
en expension with the same directional change.

The pressure in (2) and (3) can be defined by the laws of isentropic
expension end compression (chapter I); that of zone (4) is computed the
same way from the pressure in (2) and is obviously equal to P,, 88 seen

in the hodograph (fig. 29(b)). But the flow direction in (4) differs
from that in (1) by an angle 2y.

The Mach line aC' intersects the plate at C' and is reflected
along C'E, whereby C'E is parallel to A'a. The pressure in zone (5)
is again equal to thet in (3) and the flow is obviously parallel agein
to the plate.
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On passing through DE' +the flow from (4) and (6) is compressed -
the reflected wave DE' - so that in (7) the direction and the velocity
of flow are the same as in (1); the same applies to the flows in (6)
and (2).

Thus it is seen that the corresponding zones repeat themselves, hence
that the further conditions are completely known without new calculations.

3. Calculetion of Lift and Drag

The pressure variation on either side of the plate can be plotted
(figs. 29(c) and 29(d)). The pressure remains constant over the lengths
AC, CD, DE, EF and FB and over A'C', C'D', D'E', E'F' and F'B' -
where the interference lines strike the plate.

Along CD +the pressures on both sides are equal and cancel out,
whereas a downward pressure difference P3 - Do, obviously perpendicular

to the plate, acts on AC and EF, and an identical upward pressure dif-
ference on DE.

The pressure pattern in figure 29(e) repeats itself in length direc-
tion of the plate over the period 1;. If the plate chord is chosen

exactly like I, or a multiple of it, there is no resultant force, that
is, a plate of this length has neither 1ift nor wave resistance.

For the values of L, which satisfy the inequality
Lo < (L - nl3) < (I3 - Lo)

whereby n canbe =0, 1, 2, . . ., the resultant force reaches its
meximum value, and then

K= (P3 - Pg)Io (88)

Hence it serves no useful purpose to mske the plate longer than I,
because there is no more 1lift increase anyhow. On the other hand, a
moment occurs and, in the presence of friction, the drag would increase
unnecessarily. The boundary L0(= AC) is the plate length not touched
by interference lines of the other plate and can be defined geometrically
in terms of cascade spacing + end angles B8, V¥, and u.
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sin{B - (u + V) sin|B + (pq +
_ [ 1 ] Ly = 2lg + t [B = W)] (89)
sin(py + ¥) sin(py - V)
Accordingly the best ratio of spacing/chord is
+ _ t _ Sin(ul + "f) (90)
L L0 sinfp - (uy + ¥)
Now cg and c¢, can be determined when
1. L = nly then Cg = Cy =0
2. Ip < (L - nl1) < (L1 - Lg), the boundary values are
bz - D
ca=icosmy= 3 F cos V¥
q,L qQq
[ (91)
P -
cw=isin\y- 3 2’.Et’s:lan
q b Q
where
F __.'t sin[ﬁ - (”l + ‘V)]
L sin(py + V) 7
3. Lg> (L - nlq)
P3 - P
cqg = ————(L - nlij)cos ¥
%t (92)
Pz - D
ey = 2——2(L - nly)sin ¥
QL
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L. (L - nl3) > (11 - Lo)

PB"PE

ca r(L - nL3) - (L1 - Lo)] cos

qlL
(93)

Pz - o,
cw=_é—_2(L—nLl) - (L]_-Lo):lsinmlr
CllL -

The linearization can be extended to the pressures p, and P3;
admittedly then only when the angle of attack is sufficiently small.”

The pressures can be defined by the laws of small variastions
(chapter II). Thus

2
kM, Ty
pa(3) = P11l T ——= (9%)

M -1
Inserting these values in the sbove formulas for cg and cy, while
expressing the dynamic pressure with

1
q = 5 ke

and the values 1 and ¢ for cos ¥ and sin {, gives as for the
isolated plate,

5In the following table the pressures after expansion of po = 0.3140L
(corresponding to M; = 1.4004) are represented in terms of the expansion

angle:
Ppo = pressure according to isentropic law of expansion

Pop, = pressure according to the laws of small variations (chapter ITI)

0 .

v 1 2 3 b 6
po/P0 0.29906 0.28478 0.2711% 0.25809 0.23363
Por,/PoO 0.29865 0.283%35 0.26718 0.25266 0.22196

(po - PEL)/PE percent 0.1 0.5 = 1.5 2.1 5.0
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R
ca=_lLF
M2 - 1
f (95)
cw=_.l_'-_¢2__F
M2 - 1 J

The factor F approaches 1 when t/L = t/Lo. The theory is now illus-
trated on the following numerical example.

4. Numerical Example

The cascade of the numerical example in chapter IIT is applied again
with the same girstream as by linearized theory, figure 30.

It was

/1L = 0.547 B = 60°
My = 1.4004 ¥ = 3°
p1/po = 031404  py = 45.56°

The Mach lines within the cascade can now be plotted. By equation (89)

Ig = 0.14LL

Geometrically defined are

0.778L

(I - Lo)
so that

(L - 17) = 0.078L
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The tables of characteristics give
92/P01 = 0.2711 (expansion by 3° starting from pl/pol)

P3/p01 = 0.3640 (isentropic compression by 3°)

Assuming the plate width at one cm, gives:

Pz - P
resultant force EEL-= (L - 13) E_Q____El

= 0.3436

resultant force per unit length = 0.0067

1ift coefficient cg = 0.0156

drag coefficient c = 0.0008

The pressure distribution on both sides and the resultant pressure
are shown in figure 31.

5. Comparison With Exact Method

Instead of the lengthy calculstions of all crossings and reflections,
the linearized theory affords a quick and simple solution of the cascade
problem. At small angles the results are reliable and the errors small,
as seen from the comparison with the numerical examples in section 3,
chepter III and the preceding section.

ca(exact) - ca(linearized) = -2 percent

Ca(exact)

The interference lines of the linearized solution within the cascade -
the Mach lines ~ are included in figure 23 for comparison. It is seen
that the zones governing the resultant pressure are smeller by linearized
theory.

The pressure distribution of the linearized example is also shown
in figure 25.
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CHAPTER V. SCHLIEREN PHOTOGRAPHS OF CASCADE FLOW

1. Cascade Ceometry

A dilsturbance in supersonic flow is known to spresd out only down-
stream of the source of disturbance. So the pressures and velocities
on one of the sldes of a profile, stipulated by the form of the surface,
are not influenced by the other side.

This property is used to represent the flow through a cascade con-
sisting of a number of infinitely thin plates. Two profiles with a flat
surface on one side are so assembled that their flat sides face each
other and are parallel. The flow between the paresllel sides is exactly
the same as that between two adjacent plates of the cascades.

The two profiles can be moved apart or shifted relative to one
another, so that any deslred ratio t/L end any stagger angle can be
obtained.

The experimental cascade was patterned after the cascade in the
numerical exemple of chapter IIT, which had the same angle of stagger
of 30°. The Mach number of flow was - as in previous c¢alculations -

M = 1.4k0; the spacing ratlo was t/L = 0.517. The angle of attack
ranged from 0°, 1.5°, 3° to 4.5°.

The meximum profile thickness was so chosen that no blocking of the
tunnel (section 2) was produced at the selected Mach number and that the
deflection of the profiles at maximum angle of attack is small.

Now at M = 1.40 +the deflection due to compression shock, which
exactly leads to sonic velocity, is Bg = 9°. As there is to be no sub-
sonlc flow in the test section and since the angle of attack was assumed
at 4.59, the leading edge of the profile mey at most form an angle of
about 4°, which corresponds to the constructed profile.

The compression shock is not separated at the leading edge of an
infinitely thin plate or an Infinitely sharp wedge of sufficiently small
included angle. Therefore the leading edge shall be as, sharp as possible.
It succeeded in attaining a thickness of 0.05 = 0.07 mmy so that the

distance of the separated shock from the edge is scarcely visible.

The profile chord L was 118 mm, so that the cascade lles within
the tunnel window. Since the tunnel itself was 400 mm wide, the width
of the profile was limited to 398 mm, figure 32.

ll'Hll.l:c‘i’c, Co., Affoltern, Zﬂrich.
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2. Experimental Setup

The previously described profiles were mounted 1n the test section
of the supersonic tunnel of the Instituted on four supports (fig. 33).

The compression shock issulng from the leading edge of the top
profile could not be reflected at the upper tunnel wall at maximum YV,
because the deflection to be made retrogressive at the wall was too great
for the Mach number prevailing behind the shock. To avoild blocking in
this region, & bend had to be made in the upper nozzle wall (fig. 34).
The position of the bend was so chosen that the fan of expansions emanating
from it hits the cascade downstream from the entering edge. This adjusts
the wall to the flow direction after the shock to some extent as well as
raises the Mach number between the upper plate and the nozzle wall.

The Mach number in the test section before the cascade was deter-
mined by pressure measurements at the upper, lateral, and lower walls.
The investigation was carried out at a moisture content of air of about
0.5 g water/kg air.

5. Schlieren Photographs6

The schlieren photographs illustrating the flow through the plate
cascade at ¥ = 0°, 1.5° and 3° are represented in figures 36, 37,
and 38. Since a conilcal jet regime is involved, the photographs eppear
as shadows of the profiles. Figure 35 shows the position of the optical
axis with respect to the cascade; it is seen thet the shadows of the pro-
files are distorted on the mirror. At the top profile the perspective
effect 1s more obvious, because the optical axis is closer to the bottom
profile.

The equality of Mach's angle in figure 37 (¥ = 0°) is indicative
of an unchanged Mach number in the cascade. The visible disturbances
within the cascade may be due to the fact that the plate surfaces do not
exactly agree with the flow direction, or to thickening of the leading

edges by a boundary layer.

In figure 38 (¥ = 1.5°) the interference lines inside the cascade
are almost parallel, as stipulated by the linearized theory.

5See Report No. 8 of the Institute for Aerodynamics, at the E.T.H,
ref. 1.

6For description of schlieren epparatus see Report No. 8 of E.T.H.
Institute.
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At ¥ = 3° (fig. 39) the deflectlon of the shock front &t crossing
of the expansion wave emanating from the top lesding edge is plainly
visible. Figure 40 represents an enlargement of the crossing to illus-
trate the numerical exasmple in chepter III. The interference lines inside
the cascade for this example are agein shown in figure 41 at smaller scale
(compare also fig. 23), whereby the perspective effect is indicated.

In the majority of photographs the retardation of the flow near the
tunnel wall leeds to separation of the head waves.

The flow in all photographs is from left fo right.
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CHAPTER VI. THE FLAT PLATE CASCADE AT SUDDEN
ANGLE-OF-ATTACK CHANGE

1. Problem

Visualize a cascade of flat plates in a flow with relative velocity W
at an angle of attack V. A supersonic flow which may be regarded as two-
dimensional prevails throughout the cascade. At a given moment the angle
of attack of the alrstream changes from V¢ +to ¥' within an infinitely
short time interval. The transition to the new state, which is to last
for a period, 1s analyzed.

Such a change in the angle of attack takes place when the cascade
moves in an absolute flow which has not the same speed at every point,
or when one of the velocity components of the flow, normal or parallel
to the plane of the cascade, varles with respect to time.

Resolving the velocity W in two components V and U (fig. 42)
normal and perallel to the plates, the change of the angle of attack,
small in itself, can be regarded as a change of component V. This change
in V 1is obtained by superposition of a velocity vp, which has the same

direction a8 V and is obviously small compared to V and consequently
smaller than sonic veloeity. From the assumption of a small angle of
attack, it follows thet velocity component U remains greater than sonic
velocity. Besides, an eventual variation of this component U is
disregarded.

The problem therefore reduces to the study of the new forces on the
cascade, resulting from a gust vy T which, together with the velocity U

enters perpendicular to the plates.

Biot (ref. 5) solved the problem of an isolated plate by means of
"unsteady sources.” This method is applied to the cascade problem. But
first the unsteady source is described in more detail. Since the plates
are to be partly replaced by such sources, the pressures and velocities
originating from a source distribution are analyzed. Then Biot's results
for the isolated plate are correlated and extended to the cascade. The
specisl case of straight cascade (nonstaggered).is examined.

Tpy "gust" is meant a continued, uniform verticel velocity distri-
bution Vo
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2. The Unsteady Source

According to linearized theory, the general potential equation (5)
for two-dimensional unsteady flow can be simplified to

fog(l_Ma)J,&_eM_aﬁL_Léi:o (96)
ox

¢ = flow potentilal.
For a system of coordinates moving with velocity U(U/a = M), that

is, air at rest at infinity, this equation gives the acoustic wave egua-
tion for two-dimensional motion

— - =—==0 (97)

One solution for a linear sound source is

® = k cosh™1 %? ' (98)

where r = \/xe + y2 and K = constant with dimensionsl length times

velocity.

This solution is rewritten in the form

82t2
re

-1

R=]
1

k loge %; +

Vv

(99)

]

k loge %(at + act2 - r2>

r

-k logg
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Tt represents a cylindrical wave varying in time rate. At t = r/a,

© = 0, that is, if such a singularity appears in the zero point of the
coordinate system, its effect is diffused inside & circle of radius

r = a-t.

If such a source appears st the point (x,0) - on the x-axis - at

period +t;, the potential in & point P(x,y) of the surroundings of this
source at a given period (fig. 43) is

¢ = k loge = (100)

a(t - t1) + \/ag(t - t7)° - r2

In this case

r = \ﬂt-XJ.)2+y2

and the following veloclty components are obtained by simple differentiation

=Ryl a(t - %) (101s)
or o \/;2(1: - 'bl)2 - r2
Vi = Q - x (x - x1) a(t - t1) (101b)
x r2 \[a?(t - 47)2 - 2
oo ® oy ot -t (101c)
Y 3y r2 \/aa(t - tl)2 - r2

When y is small compared to a(t - t1) - near the source - the for-
mule (101a) becomes

v = k/r
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the same as that of & steady wave in Incompressible flow, hence with @
denoting the strength of the source (dimensional length X speed)

K= 2
o

The pressure in the same point is computed by

to = p 2 - 028 1 (102)
O 2 \[a2(y - %2 - 12

It will be noted that vy always equals zero for y = 0, except at r =0

in the source itself. It means that such a source delivers at no other
place on the x-axis a velocity component parallel to the y-axis.

5. Pressure and Velocity of a Periodically
Arising Source Distribution

Consider a continuous distribution of infinitely smell sources over
the length OA (fig. 44) along the negestive x-axis. The distance OA
increases linearly with the time: OA = Ut, where U 1is a constant
velocity and the sources on the x-axis appear momenterily at the point
where A arrives et the moment. The strength of this source distri-
bution per unit length of OA is assumed eqgual to ¢ (dimension of a
velocity) and remeins constant in time.

(a) Pressure

At point P(x,y) (fig. 44) the pressure p of the source distri-
bution at time T 1is, by equation (102)

_ pag [¥170 dxy

- & (103)
x3=-Ut \/a2(t - tl)z - (x - xl)E - y2

t; the time of origin of the source in point x,.
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With the followlng varisble trensformstion

¢ at 1 at
> (104)
- -1
€1 = a6y 5= sin p = "
/
we get
0
1 a
2 _ /’ ¢ (105)

peq  am J_1/sin p \/(l + 6y sin w2 - (6 - £)2 - 0

The boundaries should be defined before the integral is evaluated.
For the function in the denominstor is real only in the zone affected
" by the source distribution; this is bound by the Mach line AM and the
circle with center O and radius a-t. Hence the integration must be
made between the zero places of the function where it is real.

Posting

(L+tysinp2-(t-¢t2-12=0 (106)

the new boundaries are found at

§1(l) _ (¢ +sinp) t \/&l + sin p)2 - 1%cos2y

(2) (207)

~-cos2p

To get an idea of the integrating process as function of the posi-
tion of point P, ¢1(1) ana ¢;(2) are plotted in terms of . It

results in two curves of the second degree, which cross in point
Q(t,83) (fig. 45(a)) whereby
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- _ 1 -1 cos Q) _ _(_ M -cosp
¢ ( sin u gl <sin L COS8 u) (108)

The shaded ares represents the runge in which the integration should
be made. At small § values up to. { = \/l - 12, integrate between gl(l)

and gl(e) and then between gj(l) and the ¢ axis. In figure 45(D)

the integral limits are shown r ;ted in the x,y-plane for explanation.
The reason for not integrating over positive {7 wvalues is the absence

of sources in the right-hand half plane.

Two integration cases are differentiated

sin p

_<_1_'_3_°_°S_L>at <x < -\a2t2 - 42 > (109)

and

-\/aete-y2<x<+ 8242 _ y2

In the first instance the pressure integral is

(2) ‘

o ag

] 1 1 1

e w = = (110)
1 b/(l + £y sin w - (¢ - §1) -0
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But as §1(1> and §1(2) are the solutions of the expression below
the root, it can be rewritten as

(2)
L. ZlT C% * (111)
paq 1)
b1 (1) (2)
§1 - €1 /\61 -6
With the substitution
1
£y = gl( ) 4 (gl(z) - gl(l)> 51n29 (112)
this integral8 gives
P
< - 2 (113)
pag 2 cos p
a formuls that 18 independent of 7 = y/at.
In the second case, if polnt P 1is so situated that
S\L-m?<b<w 1= 02
it results in
0
2 .2 f at (11%)
pad 2 J¢ ’

(1)
1 \/<1+ ¢y stn w? - (¢ - 6% - 7°

8As long as the function in the denominstor can be brought, with
the aid of the integral limits, into the form of equation (111), the
integral gives the same wvalue.
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which after evaluation gives

Py = cos-1 - (£ + sin 1) (115)

pag 1w CoB W

(L + ¢ sin p.)2 - necosap

The ensulng pressure pattern along a line y = Constant is repre-
sented in figure 46. For each y +the pattern consists of two pleces.
In the first plece the pressure is constant and equal to p,, that is,

along the length EF between the points where the Mach line emanating
from A and the circle with center 0 and radius a-t intersects the
line ¥y = Constant. The second piece is composed of length

FO' = -\a2t2 - y2 and 0'G = +\|/aft2 - y2, where the pressure is vari-
able; at G +the pressure is zero. At y = y. the constant portion

disappears and wherever y = at, the pressure becomes zero.

At y =0 1t represents Biot's case with the integral limits

N <f <1 and Sl <+ 1
sin u
that is (116)
at
- <x <-at and -at <x <+ at
sin u

The pressure p, has the same value as before

Pe . __ 1 (127)
paq 2 cos u

but the second piece of the pressure distribution becomes

x
P — 4 g8in p
=0 _ = cos—1 &t (118)
pag 21t cos u

X
1+ —sinp
at

94 corresponds to Blot's 2vy.
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It should be noted that a pressure effect appears also outside the
area in which the sources are distributed, because the source in O
affects the area inside the circle a-t &as mentioned before.

(b) Velocity Calculation
In general, the velocity component.is defined by the integration

of the portions stemming from a single source (eq. (101)). In our problem
the velocity Vy is of particular interest.

It becomes

o fxl:o a(t - 1)y dxy
Rl (SRR ”2]\/:2(t S - e a2

Vy o
_ 2
If r=\[(x-x)°+ y2 is small compered to a(t - t7), that is,
for the places close to the x-axis, this equation simplifies to

x3=0 ¥y dx
vy = 2 f 1 - % tan“l<w> - tan~r X | (119)
2t =

Letting y approach 0, positive y, the results for negative values
of x are

el

vy = = (120)

n

which may be designated by v, (as in Biot's report).

For positive x wvalues, Vy = 0.

It indicates that such a source distribution gives a uniform vertical
velocity vp over the distance of the x-axis where the sources are. (For

negative y, inverse velocities result.)
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Blot mentioned this faét in his report end used it to calculaete the
pressure distribution over a plate in a vertical gust (compare next sec-
tion}.

The same varlable change as in the pressure calculatlion gives

T f;t,l(z) n(1 + by sin wat,
YT & Cl(l)-[({;-C)E*ﬂE]wl*'C sin )2_[( RY- 2]
1 1 18 4 gl) + 1

(121)

The arguments for the lntegral limit are the same as for the pres-
sure integral and Ql(l); gl(a) is given by equation (107). Integrating
between Ql(l) and Cl(e), that is, when

1l - 8
_____E_.o_p'<§< 1l-n1

sin p

2

it is seen that the integral gives the value E, so that Vy hes the

constent vy for this range of €.

For the second case (— \/l -2 < t< +V 1- n2> the integration

between Cl(l) and O indicates thatl®

(122)

K sin p(£2 + n2) - ¢

This identifies the velocity distribution on the lines y = Constant
(f1g. 47).

10

See note on p. 66.
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From the calculetion of the pressure and velocity distribution over
the lines y = Constant, it is apparent that the flow outside the circle
of radius a-t 1is steady. This is true from the physical standpoint ‘oo,
gince the gust front does not affect this ares.

4. Single Flat Plate in a Vertical Gust
(Biot 1945)

The flat plate AB of length 1 at supersonic veloclity U enters
8 gust with the transverse velocity vy (fig. 48(a)). Since the trans-

verse velocity on the plate must be zero (no flow through plate) an equal
and opposite velocity 1s superposed on the gust velocity vp 1in place

of the plete. This velocity cen be visualized as reflection of the gust
on the plate (fig. 48(b)).

Since wvelocity U is greaster than the sonic velocity, the sides of
the plates are not affected by one another, so that one slde of the plate
can be analyzed separately. The pressure acting on one side is exactly
the same as on the other, except with inverse prefix. As the interference
velocity vy is much smaller than velocity U, the linearized potential

equation can be applied to the stream potential. Selecting a system of
coordinates that moves with the velocity U, (eq. (97)) according to
which the disturbances are diffused with sonic velocity, can be applied
to the flow potentisal.

Biot's method replaces the part A0 of the plate struck by the
gust, by unsteady sources. This source distribution, which increases
in time, ylelds & uniform velocity v normal to the plate, hence sat-

isfies the boundary condition on the bottom side of the plate.

If the plate enters the gust at time © = O, the distance at time $
is A0 = -Ut, the origin of the coordinate system being located in the
gust front.

The results of section 3 can be applied directly, and the pressure
veriation along the plate defined (fig. 49(a)). As it is dependent
solely on x/at the patterns are like those for the different Mach num-
bers. The total force on the plate - the 1ift - 1s obtained by integra-
tion of the pressure pattern. Three phases are involved here (fig. 49):

I(U+a)ts1

that is, the trailing edge 1s outside the effective range of the gust
front;
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IT (U+8)t>1> (U - a)t

that is, the tralling edge 1s inside the effective range of the gust
front;
1

IIT (U-8)t2 1

thaet is, the entire plate is outside the effective range of the gust
front, hence is no longer exposed to any unsteady effect.

The integration gives the following lift values of the three phases:l]

A
T _Ut__8& (123)

A v
L -1 cos-l|2 - U cos2p) | + & osin-2{ 2 (lL -1 4+ Z
2pavgl w cos p sin p 1 7 !

1lrhe integral

appears in the calculation of Ay and Ary. With no boundary, the solu-
tion is

1
I= sin’l§ SN S sin- + AL
\/A2-1 A+ §
which gives
I=xf- A
A2 .1

between the limits -1 and +l.
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(’I‘he sin-l +to be taken between - %ﬁ end + %’-ﬁ)

Arir 1

= 12
2pavgl cosp (125)

In phase I and II the 1ift increases continuously with the time and
reaches & meximum in phase III, where it becomes independent of the time.
In the last phase the 1ift is the same as on a plate at angle vo/U in

steady flow.

5. The Straight Cascade

The cascade problem is unlike that of the plate to the extent that
the plates mubtually interfere. The sources replecing the portion of the
plate struck by the gust create a pressure on the adjacent plates. They
also produce a velocity vy, which in order to satisfy the boundery con-
dition of no through flow of the plate, makes a change in that source
distribution necessary.

Since the disturbances are small the solution of the single plate
can be superposed in the sense of the linesrized theory of the adjacent
plate effect.

As shown in sections 2 and 3, the unsteady source - and the source
distribution - which lies on the x-axis, produces no vertical velocity
component along this axls, outside the distance, where it is.

This characteristic enables the wvelocity component Vy to be

replaced by an additive source distribution along the particular parts
of the plate, which gives the velocity at each point. The new sources
create a further pressure on the plate itself - and in general react on
the adjacent plates.

The total force - the 1lift - on each plate consists then of the
1lift of the undisturbed plate (Ay), the 1ift from the pressure Py of

the sources of the adjacent plates (Ag) and the lift (Ay) of the new
source distribution due to veloclity wvy.

Suppose that h 1s the plate spacing and L the plate chord of
the straight cascade ff (fig. 50). The lines AM . . . represent the
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Mach lines emanating from the leading edge, where angle MAB 1is the
Mach angle pu = sin~t U/a.
Then the following approximation is made: +the relative flow and

the plate form in reality the angle V¢ = tan~1(vo/U). But as vo is

small compared to U, this V¥ 1s negligibly small with respect to L,
and it can be assumed that the Mach line 1tself rather than the relative
flow direction forms the angle p. In this event, the Mach lines form
the same angle with both sides of the plate. The Mach lines emerging
from the leading edge strike both sides of the plate at the same distance
AR from the leading edge. At (h/Z) > tan p the points are not located
on the plates, and the plates do not Influence eaech other. Consequently
the cases where (h/1) < tan p are examined.

At time +t = 0 the cascade 1s directly in front of the gust; the
origin of the coordinates is placed 1n the gust front. In the first
time intervals of the phenomenon the disturbances have not spread out
enough to be able to influence the adjacent plates. As in figure 51,
the distance is a.t < h, so that the circles with center 0 and
radilus a:t do not touch the plates. Lift and pressure distribution
are the same as on the single plate.

As soon as t > h/a, the plate AB comes within the effective range
of its adjacent plates. On EFG (fig. 52) the source distributions A'0’
and A"0" create an additional pressure which can be computed according
to sectlion 3. The pointe F and G are then the points of intersection
of both circles with center 0' and 0" and radius a.t with plate AB.
It 18 readlly epparent that the additive pressure on EF is constant and,
according to equation (113), has the value

De = 1 (126)
pavy Ccos U

If 1= h/at is inserted (y = h) in equation (115), the pressure
on FG follows at

(g%-+ sin u)
(127)

2 2
1+ X sin py - b cosgp
at 8.2132

r—

Pn 1

= cos-1
pavp T CO8 U

The ensuing additive preé;ure is represented in figure 5&.
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In addition, the following condition must be satisfied: The normal

velocities vy = h created by the source distribution A'0' and A"O"

are reflected on EO, so that at that point the gust is partly compen-
sated. The source distribution to be spplied is to compensate the veloc-
ity (vo - vy). The wvelocity Vy is computed as in section 3, and the

pressure TPy - aloﬁg the particular plate - 1s obtained by integration

of the pressure contribution of each source. Assuming the local veloc-
ity Vy on a small distance dxq to be constent, the yield of the source

distribution per unit length on this small distance is then ¢q = 2vy.

Along this area of the plate the source distribution produces the pres-
sure (compare section 2)

pavy dxl

® VEE(t - tl)2 - r2
hence
2
Vy‘=0 x (l) k19 )
1 : \/a.E(t - t1)¢ - r2

with Vy periodically and locally veriable. It is best to solve the

integral graphically for each particular case. The arguments for the
integral limit are the same as before. The 1ift contribution A, at

any instant is obtained by integration of the ensuing pressure plot.

To obtain the resultant pressure, this pressure is superimposed on
the two previous pressure distributions.

In the following, the pressure contribution due to the additive
pressure Dpp 1s calculated. Three phases, depending on time and

ratio h/1, are involved:
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I. When 12 (Ut + \/aatz - h2) (fig. 52), the 1ift is
a2t2-n2 + a2t2 h2
<-Ut o ) ‘/ a2t2-h2

with the previously employed variable change and with y = h

By equation (127)

dpy  eavy (1+ ¢ sinp) - 92

ag I [(1 + ¢ sin p)@ - nECoszu]\/l - t2 - 92

hence the integral

. f+\/l-n2 ¢ dpy, a
-\/1-92 ag

(131)

(1 + ¢ sinpu-12)¢

i d/‘\[zj—— V1 - L2 - q [l + ¢ sin p)2 - n2cos J

ag
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Its evaluation gives

I:—__ﬁ.—_—(cosp__l)l_l_n(cosu'l'l)
gin p cos p 7 + Ccos U
consequently
. (
by = t i(l -ncos p) + (cos p - 1)|1+ n(cos p + 1)
gpaeuo sin p cos u | (cos p + 1)

\

II. But if (fig. 53)

[

(Ut + \/a2t2 + y2> > 1> (Pt - \’a2t2 - y2)

the evaluation of the integral gives the formule

1 - Ut) , 2pavg 2
T = 2P + 1-n2-
A3II e at cos p
Vi
2p8v0 cip-lg - B gypa 1l 88  wf

n sin p cos n

65

(132)

(133)

(134)
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where
1 - Ut

HaE-tE - yz

1+ 1 cosp and B = l-m1ncos p

sin py\/1 - 72 sin p\/1 - 92

A=

The pressure ©p, 1is obtained from equation (127), when x = (1 - Ut)
is inserted, at

[~ 1
p L)
S = cos™1 2 (135)
pav, T COS _ 2 2
© 14+ B2 08 g4y wyo - h cos2u
at 2242

ITI. If 1 Z (U - at), Py = Dc &long the entire distance EB, so
that the additive 1ift

Ayirz 1 <_ h ) (136)

2pavg COs tan p

reaches a value that is independent of the time.

Note on the Velocity Integral

By & simple transformation the integral can be rewritten in the
following form:

¢ (2) (A + Bgl)dgl
1
I-= El(l) (612 + a)\ /ab,2 + B4y + 7
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This integral can be solved by means of tables (Integral table,
Part I, by Grobner and Hofreiter, Springer Co., Wien). Although the
general solution is quite complicated, the result i1s found to be inde-
pendent of §;, once the limits have been inserted.

Bearing in mind that the integration limits are the solutions of
the function below the root, the integral is rewritten as function of
the limits )

(1 - & sin p)ag
§1(2) 1 1

I= gl(l) El - &y sin w2 - cosau(gl - §1(1)> (C,l(a) - Q:j] &/r(ﬁl - Ql(l)) (Ql(z) - Ql)COE M

The following substitutlions are made consecutively:

1. X=1-¢t sinp

The limits are thus X; and X, (¥Xp > X;)

2X-X
2. ¥ = .]; _—1-2— -
X X1 + %o
3. 2= Y(Xp + X1)/(Xp - X7)
L, t = 2°
' 2
5. o - 1 At = UX1X5 - cos2u(Xy + Xp)-
A" + % ) COSQ]J.(X]_ - X2)2
6. Numerical Example
Dimensions of cascade h/1 = 0.55
Mach number of flow M= 1.41% (= V2) corresponding to a

Mach angle p = 45°
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The period +te up to the end of the phenomenon is determined by

(U - a)te = 1

whence

1
t = ——
€ 7 0.k1ke

All time intervals are referred to y/a in order to obtain a dimen-
sionless ratio (= 1/n). Then

Te . 4.38 (y = n)
y/a

The three pressure contributions p,, Dy, and p, are defined by
the formulas of the preceding section at various time intervals indicated
by the digits 0, 1, 2, 3, . . . 10.12 The timé intervals were chosen as
follows: The time interval denoted by 3 represents the end of the first
phase of the undisturbed plate (compare section L). At 71 = 1 (period: k&)
the influence of the adjacent plates begins and ends at 1 = 0.24k4
(period: 9). At n = 0.707 (period: 6), the Mach line emerging from the
leading edge of the plate strikes the adjacent plate.

Figure 54 represents the position of the gust front and the area
disturbed by 1t at the different time intervals.

Figure 55 illustrates the pressure of the undisturbed plate Py
Figure 56 illustrates the pressure contribution Dhe

The pressure contribution py i1is computed graphically, the velocity
distributions vy/vo reguired for it are obtalned by equation (122) for

the time intervals 5, 6, 7, 8 and reproduced in figure 57.

120he corresponding curves in figures 55, 56, 57, 60, and 61 are
denoted by the same digits.
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Since the integrand

Vy/VO

2
t
%)
t
becomes infinite at the two limits Cl(l) and €2(2) which are, as
known, the solution of the function below the root, the graphical solu-

- (¢ - )2

tion is comtinued to (Cl(l) - e) and (g1(2) - e’) where €, €' are small

real values in comparison to §.

Figure 58 represents several of the functions f for different time
intervals.

The integration over € and €' is made analytically, by putting
vy/vo = constant mean value.

The relation for tl/t' at 1 < 0.707, that is, when the additional
" source distribution is bound by a Mach line, 1is :

tl/t =mncos pu+ £y sinp

If the source distribution is limited by the circle of radius R = at,
a similar reletion

t1/t =1ncos B+ ¢y sin B

is applicable (fig. 59).

Figure 60 represents the pressure contribution Py, figure 61 the
resultant pressure distributions. '

The 1ift of the plate (fig. 62) is obtained by graphical integration
over the resultant pressures. At the appearance of the adjacent plate
effect the 1ift decreases with the time interval; A' represents the

- steady 1ift of the undisturbed plate.
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Figure 63 shows the moment distribution M plotted against plate
center; Mgty represents its steady value. Here the moment increases with

the time because of the built-up negative pressure from +t = h/a.
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CHAPTER VII. EFFICIENCY OF A SUPERSONIC PROPELLER

1. Introduction

The cascade efficiency defined from thrust and tengential force is
suitable also for the propeller. But in the preceding arguments the flow
was assumed parallel and the blades as infinitely thin plates, which now
must be modified. The friction at the plates must be allowed for and
the infinitely thin plates repleced by profiles of finite thickness.

Then the results are used to calculete the efficlency of a real propeller
in order to obtain an spproximate picture of the efficliency to be expected.

2. Effect of Friction on Cascade Efficiency

When the friction at the plate surfaces is taken into account, the
resulbtant force K without frictlon defined in chapters IIT and IV, is
supplemented by an additional resistance F, so that X' is the total
force acting on the plate (fig. 64).

The frictional force 1s parallel to the plate. But since its com-
ponent normal to the airstream direction is small at the angles of attack
in question, the total frictional force can be assumed to be in the flow
direction.

The drag coefficient is expressed by

cy' = ————+ 2cp (137)
ME - 1

Cp =-§E— is coefficient of frictlon of one side of the plate and q;
41

1ls dynamic pressure of inflow.

The 1ift coefficient remains
Cg = ——————— (138)

as for parallel flow.
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According to the definition introduced in chepter III, the cascade
efficiency is

/s
<

(139)

]
i

=3
o

where S' and T' are the thrust and tangential force corresponding
to the new force K'.

In terms of angles B, ¥ and o (fig. 64) the efficiency is
n = tan a tan(p - ¥)

where

@ = tan-1 S_ (140)

1 2
-1
€'=W+F=9_'.= W-{-c_f_ﬁl{___ (l).'.l)
A Ca 2¢

the efficiency n Dbecomes

1 - et tan(B - W) (142)

n =
1+ ¢'/tan(p - ¥)

Hence it 1s apparent that, contrary to the earlier results, the
efficiency is now dependent on the Mach number.
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With the assumption of a turbulent boundery layer

0.4
cp = 22 . (143)

1og1g Re™"?

according to Schlichting, where Re 1is the Reynolds number based upon
chord 1 and relative veloclity w.

The values plotted in table 9 and figure 65 as functions of the
angle of stagger were calculated with the Mach numbers M = 1.40 and
M = 2.50, then at an angle v = 3° and the optimum anglesld ¢ = 2.65°
(M= 1.40) and ¥ = 4.11° (M = 2.50). The Reynolds number assumed at
Re = 106 corresponds to cg = 0.0045.

The effect 'of friction is illustrated in figure 65, along with the
efficiency curve for ¥ = 3° with friction discounted.

3. Effect of Thickness

To assure minimum wave resistance the contour of a supersonic profile
must consist of straight lines and its maximumm thickness lie in the center,
hence a double-wedge profile is recommended (fig. 66).

By linearized airfoil theory (ref. 1) the thickness causes a drag
which increases quadratically with the thickness ratio d/l, and which
can be directly superposed on the 1ift coefficient and the frictional
drag of the plate.

Hence the drag coefficient of a profile of finite thickness ratio
with friction is

1 2

2 \/
c"_.__)'l'___‘ye.].(i).].cf._yii"_}. (144)

Me - 1

But the lift coefficient remalns unchanged

13
\/ M2
As stated in the introduction, Vopt = \/(d./l)2 + Cf ——2L7§L35 for

the plate, obviously 4/1 = O.
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end the drag/lift ratio to be inserted in equation (iL41) in place of ¢
is

u 2
e" = S ¥+ L <§-_) + cp VM2 - 1 (1L45)
ca VI 2

Table 10 shows the efficiencies of two cascades of double-wedge
profiles and the relative maximum thickness ratio

d/1 = 0.05 and 0.10 - with friction
at M= 1.4
v =3°
cp = 0.0045

These values are also shown in figure 67 together with those for
a/t = 0 (the plate) for comparison.

The angle of stagger B - with frictlon and finite thickness -
for maximum efficlency at fixed angle of attack and fixed Mach number is
found by simple differentiation at

Bﬂmax

ta.n'l<- e+ \[2 + 1) (146)

450 + (qr - % ‘tan'le)

4. Appraisasl of the Efficiency of a Supersonic Propeller

On a supersonic propeller the blades are struck at a relative speed
which at every point of the blade is greater than the sonic velocity.
Two types of propellers are differentisted. The one moves forward at
supersonic speed, so that supersonic speed occurs at every rpm and every B.
On the other the supersconic speed is reached without it having to move for-
ward with supersonic speed. The efficlency of the first type propeller
is calculated.
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The propeller has a forward speed v of about 406 m/sec (M= 1.20 -
sonic velocity a = 338 m/sec); it has four blades of 2m outside diameter
and 1lm inside diameter and 0.5 hub ratio. The cross section of the blade
is a double-wedge profile, with meximum thickness ratio of d/l = 0.07
at the hub, and tapering to d/1 = 0.05 at the tip.

The meximum efficiency of a profile is reached with B = 45°,
according to chapter III. At the blade tip where the thrust is highest,
this condition gives a tip speed of 400 ﬁ/sec; that corresponds to
3,820 rpm. For reasons of strength the blade chord tapers from Ly = 4o em

at the hub to Lg = 30 cm at the tip.

In each coaxial cylindrical sectlion - with respect to the propeller
axls - the angle between the relative flow direction and the profile axis -
the angle of attack - was assumed at wopt (compare introduction). To

satisfy this condition, the angle of stagger in each section, that is,
the angle between profile axis and direction of peripheral speed U must
be varied. The relation

ten(B - ¥) = v/u

must be satisfied.

With reference to a system of coordinates fixed in space, each point
of the propeller moves on a helicel line. Disturbances issue from each
point which at the assumed pressure conditions and angles of attack can
be regarded only as sound disturbances. The zone disturbed by each blade
is then limited by the enveloping curve of all spheres whose centers lie
on the various helical lines and whose radii at the same time are equal
to sonic velocity X time. Figure 68 represents the disturbed zone of
an edge OA, which, for example, moves at a forward speed of 1.2 X a
and whose maximum tip speed equals the sonic veloecity; O'A' represents
the position of the same edge after a time interval AL, which corresponds
to a fourth of a revolution.

Considering that the blaedes are twisted, that the disturbances of
different sections can influence one another and be reflected on propeller
hub, it is readily apparent that an exact calculation of the forces on
each blade represents a difficult problem. When each blade is outside
the zone of disturbance of the other blade, the blade can be examined
separately. Assuming homogeneous flow and coaxiasl cylindrical areas,
that is, radial equilibrium, the blede forces can be determined from a
two-dimensional consideration of the developed blade (fig. 69), by com-
puting the 1ift and drag end from it the thrust and tangential force in
each cross section by lineasrized theory.
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At the velocities selected the boundary effect i1s confined to a
modergtely large zone compared to blade area, so that its effect within
the framework of the intended appraisal on the total forces can be
disregarded.

The thrust of the whole blade is then
tip as

S = f — dr (147)
blade wb  Ar

The integration is made by graphical method (fig. T1l(a)) with

w2 cos[(B - ¥) + 7]
V[ha 1 2 cos ¥

(148)

computed for five sections (fig. 69).

The corresponding Reynolds number for all sections was assumed at
ce = 0.004 (turbulent boundary layer).

The torque D of a blade is defined the same way as the thrust
by integration (fig. 71(b)). The following relation applies:

tip i -
Dbla.de=f aT » ar = by P“zzsmEB ¢)+ﬂrdr
hup dr \Aug _1 2 cos ¥
(149)

The characteristics for the five sections are correlsted in table 2.
The integration gives '

425 kg

Splade

600 kg/m

Dpiade
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hence for the propeller

w
]

1700 kg

D = 2400 kgm

The efficiency of the propeller is given by

Sv

== (150)

with the values inserted gives

1 = 71.8 percent

A guick and close estimate of the efficiency is obtainable directly

from the calculation of (§§> and (§2> ; where these wvalues are appli-
M M

dr
cable to the whole blade.

SMMARY

1. Lift and drag coefficlients for the flat plate at various Mach
numbers, ranglng from 1.20 to 10, and for different angles of incidence
are calculated, account being taken of the exact flow over both sides of
the plate. These values are tabulated and also given in the form of
charts. The same coefficients are also calculeted under the assumptions
of linearized flow over the plate, according to the Ackeret theory. A
comparison of both methods shows reasonable agreement between the 1in-
carized theory and the exact method within the ususl range of angles of
incidence (max 10°) and for the usual Mach numbers. Special formulas
for calculating the 1lift and drag coefficients for very high Mach num-
vers are derived.

2. An analytical solution of the problem of the interactlon between
shock waves and expansion waves has been established.

5. A method for calculating the 1ift end drag coefficients for a
cascade of flat plates is described and spplied to an example, with the
- aid of the formulas derived in the foregoing item. A definition for the



78 NACA T™ 1369

efficiency of the cascade - without friction - is introduced and the
efficiency is evaluated for two Mach numbers and different angles of
blading.

4. A linearirzed theory for supersamic flow through a cascade of flat
plates is established and applied to the example already treated. Com-
parison of the 1lift coefficients shows reasonsble agreement.

5. For demonstration purposes, schlieren photogresphs were made showing
the Flow between two flat surfaces. They serve to confirm the ‘established
linearized theory for small angles of incidence and show clesrly the inter-
actlon between shock and expansion waves.

6. Under the assumption that the flow through the cascade of flat
plates undergoes a small sudden change of direction, thaet is, a small
change in the angle of incidence, the nonstationary flow in the cascade
is discussed to show the kind of forces which act on the plates during
the trensition period. An example has been calculated in detail.

T. The definition of the efficiency mentioned in 3, is especially
suitable for application to a supersonic propelier. The effect of fric-
tion and blade thickness on that efficiency is shown. A rough estimstion
of the efficlency of a supersonic propeller is théen made.

Transleted by J. Vanier
Natlonal Advisory Commlttee
for Aeronautics
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TABLE 1
My 8g° 78° P1/Po a/pg a/py
1.00 0 90 0.52830 0.36981 0.700
1.10 1.40 73.68 46835 . 39704 . 847
1.20 3.70 68.08 .41238 L1567 1.008
1.30 6.32 65.12 . 36092 42689 1.183
1.40 9.03 63.33% Blh2h L3z1ak 1.372
1.50 11.67 62.25 .27240 .43050 1.575
1.60 4.2k 61.65 23527 42182 1.792
1.70 16.63 61.37 .20259 .10995 2.023
1.8 18.84 61.28 L1740k .39472 2.268
1.90 20.87 61.35 .1ho2k 37714 2.527
2.00 22.71 61.48 .12780 «35750 2.800
2.20 25.90 61.90 .09352 .31684 3.%88
2.50 29.67 62.40 .05853 .25610 4.375
3.00 34.01 63.77 .02722 C17143 6.300
k.00 38.75 65.25 .00658 07375 11.20
5.00 b1.311 66.20 .00189 .03306 17.50
6.00 ko, ul 66.75 .00063 .01588 25.20
8.00 43,79 67.00 .00010 .00448 4k, 80
10.00 I .43 67.12 .00002 .00165 70.00
® 45.58 67.70 0 0 ®
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TABLE 2

LIFT AND DRAG COEFFICIENTS

My |V Po/Po | %0 | ®2'/P1| P2'/Po Ca Cw €
l1.20| 1 0.39145} 58.75| 1.056 | 0.43527| 0.1054 | 0.0018 | 0.0175
2 .37210 | 61.10| 1.220 461871 .2158| .0075| .0349
3 .35403 | 64.37 | 1.199 oWkl | L3373 L0177 | L0524
3.7 .35952 | 68.08( 1.277 .52681 1 4011 | .0259 | .0641
140 1 .29910 | 46.87 1.051 .3%027( .0723 | .0013| .OLl75
2 28480 | 48.19( 1.10k 34692 | .1sko | .0050 [ L0349
3 2711k | k9.57| 1.159 .36hk20| .2156| .0113| .052%
L 25824 | 51.151 1.219 .38306 | .2888| .0202| .0699
6 23376 | 54.62} 1.353 42517 4415 Lo64 | L2052
8 21130 | 59.36| 1.527 |  .47984 | .6168| .086T7 | .1u06
9.03| .20050]| 63.17| 1.655 .52007 | .73%21 | .1159 | .1584
1.600 1 2237k | 39.67| 1.060 24939 [ .0608| .0011| .0175
2 .21269 | 40.73| 1.104 .25978| .1116| .0039 | .0349
3 .20207 | 41.82| 1.161 27300 | .1679 | .0088( .0524
L .19191 ) k2.93 | 1.219 28679 | .224k [ .015T | .0699
6 172801 b5.361 1.345 .31637| .3385| .0356 | .1051
8 .15525 | 48.0k | 1.484 34938 | .h557 | L0641 [ .1406
10 L1391% | 5L.14 | 1.6L4h .38685| .5783! .1019| .1762
12 12438 54.80) 1.832 43101 .71100 L1511 ] .2125
1h.2h | .11022] 61.65] 2.143 50418 .9052 | .2532| .2532
1.80| 1 .16503 | B4.64 | 1.05k4 .18%52| .o468| .0008 | .0175
2 .15640 | 35.53| 1.110 .19318 | .0931 | .0033 | .0349
3 .14813| 36.48] 1.170 .20363 | .1kok | .co7h | .052k
k L14019 | 37.44 | 1.230 21407 .1867| .0131]| .0699
6 .12534 | 39.49| 1.362 23704 | 2814 | .0296 | .1051
8 L11175 1 41.691 1.505 .26193 | .3768| .0530 | .1h06
10 .09935 | 44.06] 1.661 .28908 | 4734 | .083k| .1763
12 .08806 | 46.70| 1.835 .319%36 | .5732 | .1218] .2126
i3 .07203| 51.35| 2.139 37227 | .7323 | .1962| .2679
18 .06011| 58.00{ 2.551 A4398 1 .92k9 | .3005 | .324k9
18.84| .05788 61.28( 2.740 47687 | 1.0045 | .3k27| .3h12
2.00( 1 .12076 | 30.82| 1.058 13521 | .okok | .0007{ .0L175
2 L1401 31.65( 1.118 .14288 | .0807 | .0028( .0349
3 .10757 | 32.581 1.181 | 1.15093| .1211| .063 .0523
L .10141 | 33.40] 1.247 .15937 | .1618| .0113| .0699
6 08994 | 35.24 1 1.377 7726 2429 | 02551 L1051
8 .0T9k9 | 37.22} 1.539 19668 | 32461 .0456 | .1kob6
10 .07005 | 39.32| 1.707 .21815| .L408 0719 | .1763
12 .06149| L41.59| 1.889 L2Laka | L4923 | .1046 | .2125
15 L0502k | L5.34( 2.195 28052 | .6222} .1667| .2679
18 04070 49.78| 2.555 32653 | .760k | .2k7r| .32Lk9
21 .03265( 55.671 3.01k .38519 | .9207| .3534( .3838
22.71| .02886| 61.48} 3.460 L2191 1.0659 | Jhhé2 | L L18T
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TARLE, 2.~ Concluded
LIFT AND DRAG COEFFICIENTS

My v Pg/_Po 70 Pa'/Pl P2'/P0 Cg Cw €
2.50 1. 0.05296 24h.35 1.068 0.06251 .0373 0.0006 0.0175
2 .05113 25.05 1.1%1 .06678 L0611 .0021 .0349
3 .0bkTT2 25.82 1.216 07117 .091L 00L8 .0524
L .0l50 26.62 1.296 .07585 .1221 .0085 .0699
6 03857 28.27 1.452 .08498 .1826 .0189 .1051
8 03455 %0.00 1.658 .09704 .2416 .0340 . 1406
10 02859 31.86 1.865 .10916 .3098 .0536 L1763
12 02445 33.81 2.091 .122%2 .3738 .0795 .2126
15 01917 36.95 2.467 . 1439 4723 .1266 .2679
18 ol484 40.4ko 2.895 . 16949 5742 .1865 .3249
22 01035 45.62 2.557 .20816 L7162 .2893 .koko
28 00575 56.35 4.885 .28592 -9659 5136 5317
29.67 ook82 62.65 | 5.602 220 .0960 6240 .5695
5.00 3.60 .00118 1k 1.541 .00291 .0523 0033 .0627
6.17 .0008k4 16 2.051 .00388 .09k 0098 .1076
10.68 .00043 20 3.247 .00614 .1698 .0319 .1879
16.60 .00018 26 5.436 .01027 .2926 .0869 .2972
20.21 .00009 30 T7-129 .0134T .3800 .1393 . 3666
26.78 .00002 38 10.893 .02059 .5557 .2792 .5024
31.21 .000009 Ly 1%.913 .02629 .6805 .4088 .6000
36.29 .000003 52 17.953 .03392 .88, .6048 . T301
L1.11 000001 66 2. 20 .04575 .okaT .9098 .8726
10.00 3.21 8 2.091 .0228 .0013 .0560
7.65 12 4.877 .061L .0082 .1340
13.31 18 10.981 .1549 .0365 .2356
18.53 24 19.135 .2613 .087T .3351
23.47 %0 29.018 .3828 L1662 43hy
28.17 36 4o.16% -5079 .2726 .5366
32.59 o 52.080 .6288 ho1t .6393
36.64 48 64.263 -T74+88 .5565 -Th3T
40.18 54 76.213 .86k1, L7292 .81
Lo.90 60 87.361 .9529 . 8862 .9293
44 .43 67.12 98.713 .0125 .9925 .9803
o 8.37 10 0497 0073 L4712
16.57 20 .1873 .0558 2973
2Lk.50 30 <3795 L1731 4557
28.31 35 el .2559 .5386
3%2.05 %0 5843 . 3662 .6261
35.55 k5 .6812 Lgu6 .T1h6
38.81 50 T840 6121 . 8042
41.6 55 -8735 <7754 .8876
43.9 60 .9452 .9123 .9623
45.58 67.8 .0001 1.0204 1.0200
N 5 .0152 0013 .0875
10 L0594 .0105 L1763
15 L1294 .03hT .2679
20 .2198 .0801 3640
25 .3238 .1509 1663
30 4330 -2500 STTH
35 5388 <3712 7002
Lo .6331 L5311 .8391
45 .T068 .T068 1.0000
50 -T5hT .8992 1.1918
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TABLE 3
LIFT AND DRAG COEFFICIENTS OF THE BOUNDARY CURVE
My \Vso Po /Pg 7s Po l/ Py| Po ' /Po Ca Cw €
fe) t

1.10| 1.4 |o0.43110 | 73 14| 1.130| 0.52924| 0.2471| 0.0104 | 0.0248
1.20| 3.70| .35952 | 68 5 1.277F .52681| .4o11| .0259 | .06kl
1.30| 6.32| .26668 | 65 7 1.4571 .52586| .6035| .0668| .1107
1.40| 9.03| .20050 | 63 10| 1.656| .52009( .7321| .1159| .1584
1.50 | 11.67| .14392 | 62 15} 1.8M4| .51593|. .8339| .172k| .2068
1.60 | 14.24 | .11022 | 61 39| 2.1h3| .50418| .9052| .2297| .2532
1.70 | 16.63| .07918 | 61 22| 2.439| .koki2| .9697| .287 ! .2988
1.8 | 18.8+} .05788 | 61 17| 2.7h1| .W7687| 1.0045| .3427 | .3h12
1.90 | 20.87 | .ohkok7 | 61 21| 3.097| .46220) 1.0449| .398% | .3812
2.00 | 22.71| .02886 | 61 29| 3.460| .Lh219| 1.0665| 465 | 4187
2.20 | 25.90 | .01417 | 61 54| L4.250| .387h6| 1.0883( .5284| .4855
2.50 | 29.67 | .o0482 | 62 39| 5.602| .4h221| 1.0960| .6242 | .5695
3.00 | 3%.01| .00073 | 63 46| 8.385| .22824| 1.0735| .7243| .6747
4.00 | 38.75 | .000014| 65 15| 15.25 .10060| 1.0650| .8551 | .8025
5.00 [ 41.11} .000001} 66 12| 24.4oO .046121 1.0515| .9107 | .8652
6.00 | k2.44 |0 66 45| 35.25 .02231| 1.0362| .9432 | .9136
8.00 | 43.79 | © 67 o | 63.11 .00630| 1.0171| .9692 | .9601
10.00 | bh.43 | 0O 67 7 | 98.90 .00233| 1.0121| .9895 | .9803

© 45.58 | 0 67 41 1.0050 | 1.0185 { 1.0200
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TARLE b4
LIFT AND DRAG COEFFICIENTS ACCORDING TO TEE LINEARIZED THEORY
¥ L Cg Sy €
1.20 v 0.10553 0.00018 0.0175
2 .21046 00734 .0349
3 31600 .01655 0524
3.7 38957 .02516 0646
1.h0 1 Reyainh .00125 L0175
2 14248 00497 .0359
3 .21392 .01121 .05k
k .28456 .01989 0698
6 RN .Olk80 1047
8 56992 07950 .1396
9.03 64259 .10112 157k
1.60 1 05604 .00089 L0175
2 ST .003%0 0340
3 .16781 00879 052l
L 22353 01560 .0698
6 33530 .03458 1047
8 o1 06240 1396
10 -55884 -09752 1745
12 .67060 .1hoko ~209%
1h.24 79582 19772 2485
1.8 1 -0h676 -00082 0175
2 .09325 -00326 -0349
3 . 15001 00734 052k
i 18650 01302 .0698
6 27976 .02932 L2047 .
8 37301 .0520% 1396
10 46626 .0813 TR
12 55952 .1171l 2092
15 69953 .1831h .2618
18.84 -B7855 28884 3288
2.00 1 .okok2 .00070 L0175
2 .08060 00281, 0349
3 .12102 00634 0524
I .16120 .01125 .0698
6 24180 .02532 L1047
8 32240 .0k995 1396
10 50301 07030 LLTH
12 48361 .10125 2093
15 60463 15829 .2618
18 .7256% 22802 .51k2
21 8643 .3100 3665
2.71 91502 -36259 -3962
2.5%0 1 03054 -00053 <0175
2 .06091 .00213 L0349
3 .09145 00479 0524
2 .1%781 .00851 .0628
.18272 .01915 .1087
8 .auigz .ozlwg 1526
10 -30! -05318 . -1TkS
12 365hL 07650 2064
15 .1;5689 .11962 .2618
18 .=lg3l 17230 3142
2] . 41675 .
29.67 90366 46789 -5?-'%
5.00 L .05699 .00398 .0698
6 08349 00896 -lokt
12 17097 -03579 -2094
18 25654 08061 .31h2
2k . 3 4321 1189
0 RIV-4o7) 22385 hT12
36 47030 .32232 -5760
.11 58584 12033 STAT5
10.00 4 02806 00196 L0698
6 .0k209 - .004L1 -10k7
12 .08418 .01762 2054
18 12631 .03969 .31k2
24 .16840 -07051 -4189
%0 21049 .11022 4712
36 .252%8 .15800 .5760
k2 29467 . ST330
Ih L3 31172 -2417T T195 4}
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TABLE 5

M ve (cac - aL) e (eve - o) Cw
1.ho 1 0.00084 .07228 o] 0.0013
2 .00151 .14399 0 .0050
3 .00163 .21555 .0001 .0113
i .00385 .28881 .0002 .0202
6 .01408 4152 .0010 . 0464
8 .04690 61682 .0072 0867
9.03 .089%0 . 73209 .0148 .1159
5.00 L .0005 .0523 .0009 .0033
6 .0030 L0914 .0010 .0098
12 .0255 .1698 .0063 .0319
18 .0696 .2996 L0246 L0869
2L .1391 .3800 L0341 .1393
30 L1846 . 5557 L1453 L2792
36 3972 .6805 .2698 .40o88
41.21 . 4669 . 8284 4895 .6048




12K

NACA T 1369
TABLE 6

Region P/Poy M u° Po/Poy

1 0.31404 1.4004 45.5 1
2 . 3645 1.293% 50.6 .9996

3 .2991 1.435 Li.2 1
4 L3455 1.332 48.8 .9997

5 .2848 1.469 k2.9 1
6 . 3304 1.364 7.1 .9997

7 2711 1.503 hi.7 1
8 .3139 1.401 h5.7 .9998
- 9 .3285 1.368 k7.0 .9997
10 .3139 1.401 45.6 .9997
_ 11 .2985 1.436 4.1 . 9997
12 .2999 1.433 iy, 2 .9997
13 .2850 1.468 ho.9 .9997
1k .2708 1.504 ki.7 .9997
15 .3624 1.154 50.1 .9982
16 L3k 1.334 48.6 .9997
17 .3295 1.366 k7.0 -9997
18 <312k 1.Lkok YR .9997
19 .3276 1.370 46.9 .9998
20 .313L 1.h02 45.5 .9997
21 2972 - 1.439 hh.o .9997
22 .2996 1.434 Lh.8 .9997
23 2842 1.483 42.8 .9997
2L .2696 1.507 41.6 <9997

25 . 3610
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(a) Angle of deflection and shock angle of the

shocks between the zones

Regions Angle ofé%eflection Shock7gngle
1.2 3.00 4o.57
3-4 3.0% 47.91
5-6 2.9% 46.48
7-8 2.93 ks.13
8-15 2.93 49.43

11-16 2.92 47.78
13-17 2.90 46.40
14-18 2.93 45.03
18-25 2.93 49.3%0
(b) Intensity of expansion waves
between the zones
Regions Intzggity Regions Intzggity

1-3 1.00 13-14 1.02

2-4 1.03 15-16 1.00

3-5 1.00 16-17 .88

L6 .89 16-19 1.00

L-9 1.03 17-18 1.06

5-7 1.00 17-20 .99

6-8 1.00 18-21° 1.00

8-11 1.01 19-20 .89

9-10 .92 20-21 1.05

10-11 1.00 21-23 .89
10-12 .92 22-23 1.05
11-13 .91 23-24 1.05
12-13 1.02
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TABLE 8

CASCADE EFFICIENCY 1 PERCENT = £(B,¥) (NO FRICTION)

O
Y 1 3 5 T
BO
10 89.8 69.6 49.6 29.72
20 ok.7 83.9 73.6 63.h 48.4
30 96.0 88.3 80.8 73.5 63.1
4o 96.5 89.8 83.4 773 68.8
50 96.6 90.00 83.8 78.2 T0.4
60 96.0 88.8 82.4 76.5 68.8
70 94.8 85.7 78.2 1.k 63.1
80 90.6 76.4 65.8 57.65 48.54
BC for max. 1 45.5 46.5 k7.5 48.5 50.0
max, Percent 96.3 90.2 83.7 78.2 T0.4
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TABLE 9

CASCADE EFFICIENCY WITH FRICTION ALILOWED FOR
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TABLE 10

CASCADE EFFICIENCY WITH DOUBLE-WEDGE PROFILE AND FRICTION

M=140 = 3°

BO a/t = 0.05 a/t = 0.10
10 45.5% 29.04
20 65.28 y7.22

30 72.52 Th. 78
40 75.11 56.93

50 4. 83 5k4. 82

60 71.50 L7.31

70 62.71 29.25

80 37.18
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TABLE 11

1 3 5

Section hub 2 center| 4 tip

N M S
Redius, IM « « « « « « « « « o« « 0.500] 0.625| 0.750| 0.875| 1.000
Profile chord, m . . . +. « +« « + . 0.450} 0.425 0.400| 0.375| 0.350
Thickness ratio, 4/ . . . . . . . 0.070| 0.065| 0.06| 0.055| 0.050
Max. thickness, dm . . . . . . . . 0.0315|0.0282| 0.024|0.0206(0.0175
Tip speed, um/sec . . . . . . . . 200 250 300 350 Loo
Relative velocity, wm/sec . . . .| 452.7| 476.8| 50k.6| 536.0| 570.0
Reletive Mach number, M_ . . . . . 1.339) 1.411| 1.493| 1.586| 1.687
Angle of attack, . .« . .| 0.0818{0.0 0.0761(0.0742|0.0721
& Yopt {§ s s | R R
Lift coefficlent, cg « « « « « . . 0.3672|0.3164|0.2745(0.2407(0.2120
Drag/lift ratio, € « « « . « « . . 0.1637|0.1572|0.1523|0. 1484 |0. 1442
Gliding angle, 7© .+ +« « ¢ .+ . . . 9.30| 8.95| 8.66] 8.43( 8.21
Stagger, B . ¢ ¢ v 0 v 4 e . 68.8| 62.9| 57.9| 53.5| 49.58
as/dr, kg/m . . . . . . . .. .. 612 748 825 878| ook
AD/AT, KE - ¢ « « « ¢ 4 e 0w ou .. 1026 1118 1173 1212) 1224
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Figure 2.~ Oblique compression shock.
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Figure 3.- Shock and flow deflection angles for Mg = 1.
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Figure 4,~ Flat plate in supersonic flow.
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(b) Dynamic pressure/ inflow pressure
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Figure 5.
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Figure 6.- Lift of the flat plate.
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Pigure 7.- Drag of flat plate.
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Polars of flat plate,

Figure 8,-
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Figure 9.- Flat plate in linearized flow.
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Figure 10.- Lift by linearized theory.
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Figure 11.- Drag by linearized theory.
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Shock polar
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(a) Qvertaking

(b) Crossing (in free jefs)
(c) Reflection

(d) Cascade flow

Figure 12.- Interacilon between expansion waves and compression
shocks.
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Figure 13.- Small expansion.
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Figure 14,- Small variation for one compression shock.

(b)

Tigure 15.- Compression shock overtaken by expansion wave.



14K '
NACA ™™ 1369 101

----- GCharacteristics
—— Shock polar

Figure 16.- Schematic representation of the graphical solution.

Figure 18.- Expansion wave crosses compression shock.
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Figure 19.~ Schematic representation of graphical solution,

Figure 20, - Crossing of expansion waves,
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Figure 21.- Reflection of expansion waves and compression shocks,

Figure 22.- The cascade problem.
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Figure 23.- Cascade example,
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Figure 24.- Directional changes of interference lines of the cascade
example, Large digits denote zones; small digits denote directional
changes at crossing of expansion waves and compression shocks,

At reflections they indicate the direction of the reflected waves; flow

always from left to right.
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Pressure at upper side

..... Pressure at lower side

/////// Resultant pressure
Resultont pressure by linearized theory

Figure 25.~ Pressure variation along the plate (exact method).

Figure 26.- Definition of thrust and tangential force.
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Figure 27.- Cascade efficiency (no friction).
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Figure 28.- Linearization of crossing.
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Figure 29.- Linearized cascade theory.
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Figure 30.~ Numerical example of linearized cascade theory.
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- Figure 31.- Pressure distribution over plate by linearized cascade
theory.
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Figure 32.- The profile.
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Figure 33.- Profile in test section of tunnel.
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Figure 34.- Schematic representation of the bend in the upper tunnel
wall.



112 ' NACA TM 1369

O Light source S Mirror
K Tunnel P Profiles

Figure 35.- Position of optical axis and shadow formation. x =8 cm;
y =4.5 cm; Z =300 cm.

Figure 36.- Profile at starting.

Figure 37.- Schlieren diaphragm vertical. ¥ =0°.
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Figure 39.~ Schlieren diaphragm horizontal. ¥ = 3.0°.
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Figure 40.- Photograph of crossing.

Figure 41,- Perspective distortion of figure 23. For comparison with
schlieren photograph in figure 39. (O represents the position of
the light source; the finer lines represent the shadow boundaries of
the plate and 1nterference lines.)
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Y,

Tigure 44.- The periodically created source distribution.
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Figure 45.- The integration limit.
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Figure 46.- DPressure distribution at y = constant lines.
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Figure 48.- The flat plate in a gust.
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Figure 49.- Pressure distribution along the plate.



NACA TM 1369

119

f M
A = B'—
Vo uo E ]
I h
A L
o xF s F13°
. h
A' >yt 8'7"‘
b Frrreid © \ /\
M
l f
Figure 50.- The straight cascade in vertical gust.
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Figure 51.- _Start of process.
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Figure 53.- Second phase of additional pressure.
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Figure 55.- Pressure of undisturbed plate Pye
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Figure 56,- Pressure contribution Py,
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Figure 57.- Velocity distributions vy/vo at times 5, 6, 7, and 8.
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Figure 58.- Functions f for various time intervals.



124 NACA ™ 1369

(2)

—

Figure 60.- Pressure contribution pg.

Figure 61.- Resultant pressure distributions,
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Figure 62,- Lift of plate.
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Figure 63.; Moment distribution M referred to plate center,
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Figure 64.- Allowance for friction.
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(a) No friction,

(b) With friction. M =1.40, (¢) With friction, M = 2,50,
¥ = 30, ¥ =30,
(b*) With friction, M =1.40, (c') With friction. M = 2,50,
¥ = 2,659, v =4,110,

Figure 65,~ Cascade efficiency. -
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Figure 68.- Allowance of finite thickness ratio.
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Figure 687.- Efficiency of cascade of double-wedge profiles.
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Figure 68.~ Area disturbed by leading edge of a blade assumed as

flat plate.
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Figure 69.- Blade chord, maximum thickness, stagger, and location
of cross sections.
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Figure 70.- Blade form, blade form without angular rotation,
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NACA - Langley Field, Va.



